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Optimal Microgravity Vibration
S

Isolation: An Algebraic
Introduction’

R.D. Hampton,” C. M. Grodsinsky,’ PE. Allaire,? D.W. Lewis,’
and C.R. Knospe’

Abstract

Certain experiments contemplated for space platforms must be isolated from the accel-
erations of the platform. In this paper an optimal active control is developed for micro-
gravity vibration isolation, using constant state feedback gains (identical to those obtained
from the Linear Quadratic Regulator [LQR] approach) along with constant feedforward
(preview) gains.

The quadratic cost function for this control algorithm effectively weights accelerations
of the platform due to external disturbances by a factor proportional to (1/w)?. Low fre-
quency accelerations (less than 50 Hz) are attenuated by greater than two orders of magni-
tude. The control relies on the absolute position and velocity feedback of the experiment
and the absolute position and velocity feed-forward of the platform, and generally derives
the stability robustness characteristics guaranteed by the LOR approach to optimality.

The method as derived is extendable to the case in which only the relative positions
and the absolute accelerations of the experiment and space platform are available.

Introduction

A space platform experiences local, low frequency accelerations (0.01-30 Hz)
due to equipment motions and vibrations, and to crew activity [1,2], as indicated
in Fig. 1 [3]. Certain experiments, such as the growth of isotropic crystals, re-
quire an environment in which the accelerations amount to only a few micro-g’s
[4). (See Fig. 2 [2]) Microgravity requirements to accommodate such experi-
ments have been specified for Space Station Freedom (SSF). (Fig. 1.) [2] Such an
environment is not presently available on manned space platforms [2].

'presented at the Workshop on Aerospace Applications of Magnetic Suspension Technology,
September 25-27, 1990, under the title "Microgravity Vibration Isolation: An Optimal Control
JLaw for the One-Dimensional Case.”

'Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesviile,
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FIG. 1. SSF Microgravity Requirements and Anticipated Acceleration Environment.

Since the experiment and space platform centers of gravity do not coincide, a
means is needed to prevent the experiment from drifting into its own orbital
motion and into the space platform wall. Additionally, some experiments require
umbilicals to provide power, experiment control, coolant flow, communications
linkage, or other services. Unfortunately, such measures also mean that unwanted
platform accelerations will be transmitted to the experiments. This necessitates
experiment isolation. Passive isolators, however, cannot compensate for umbilical
stiffness, nor deal adequately with direct disturbances, nor can they achieve low
enough corner frequencies even if umbilicals are absent [S]. Active isolation is
therefore essential. ‘

The problem, then, is to design an active isolation system to minimize these
undesired acceleration transmissions for a tethered payload, while achieving ade-
quate stability margins and system robustness. Spatial and control energy limita-
tions must also be accommodated. Although microgravity isolation systems have
been developed and tested [6], no controller offered to date takes into account
the effect of umbilicals in isolator control design (7]

Mathematical Model

The general problem has three translational and three rotational degrees of
freedom. For simplicity, however, this analysis will consider only the one-dimen-
sional problem. The general problem could be treated in an analogous manner.
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FIG. 2. Experiment Isolation Requirements {Tolerable g-level as a Function of Frequency for
a Variety of Materials Science Experiments as Predicted by Order-of-Magnitude Analysis for a
Single-Frequency Disturbance [after Demel, 1986, from Nelson, 1991]).

Let the experiment be modeled as a mass m, with position x(#). Assume that the
space station has position d(t), and that umbilicals with stiffness k and damping
¢ connect the experiment and space station. Suppose further that a magnetic ac-
tuator applies a control force proportional to the applied current i(1), with pro-
portionality constant a. Such a model is shown in Fig. 3.

The system equation of motion is

mi +c(i —d) + k(x —d) +ai =0 1)

Station
waill ]

Actuator

LR RN RRRY

L— d(t) — x(t)

FIG. 3. System Model.
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Division by m and rearrangement yields

ie Ky - S -dy - 2)
m m

m
In state space notation this becomes
x=Ax + bu + f (3)

where

w =i, f=1¢k c -

The objective is to minimize the acceleration X(1).
Optimal Control Problem

The optimal control problem is that of determining the control current u(t) =
i(t) which minimizes a suitable performance index

J = J(x,u,t) 4)

for the system described by equation (3) subject to the state variable conditions
x(0) = x, (5a)

lim x(¢) = 0 (5b)

fovco
Another reasonable condition is that f(¢) is bounded, and it will be found mathe-
matically advantageous L0 assume that f(r) is also a dwindling function:
}Ln; £(r) =10 (5¢)

In actuality, f(¢) is not dwindling, and so neither is x(t). However, for bounded
f(r) (and a controllable system [8] such as this), the optimal controller developed
in this paper has only a vanishing dependence on f(t) for times in the distant fu-
ture; and it depends on x(f) only in a causal fashion. Further, with only minor
changes in the performance index [9] (and more complicated mathematics) the
dwindling assumptions can be removed without affecting the resulting control,
using the basic method of the present paper. [Tomizuka’s dynamic programming
approach to the command-following problem leads to corresponding results [10].]
Hence, the above simplifying assumptions are justified.

A quadratic performance index

1 (™ s
J = —‘)' I [er/,x + W}H’]d! (6)
0
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has been chosen, as one that lends itself well to the variational approach to opti-
mal controls, since an analytical solution is desired. The upper limit of the defi-
nite integral has been selected so as to yield a time-invariant controller. Here W
is a square 2 X 2 constant weighting matrix while ws is a weighting constant.

Although W, could be a full 2 x 2 matrix, for this problem a diagonal form
has been employed for the sake of simplicity.

Wig 0
W = [ 0 w}J (7

The performance index consequently reduces to

1 » 2 2 2
J = —2‘ J. [wl,,xf + wX: + W}U']dt, (8)
]

so that each state is weighted independently.
If sinusoidal motion of the experiment is considered, so that

x(t) = By sin wt

and X(¢) = —w*x(1), the cost function can be expressed in terms of the accelera-
tion and control as

J = 1 J {(W‘: + l)'—ﬁ’)Bf,'\f'z + w_;uz]dt 9
2 0 w w”

It is apparent that this performance index conveniently weights accelerations at
low frequencies much more than at higher frequencies.

Solution

Finding the optimal control to minimize equation (4) is a variational problem
of Lagrange, for which the initial steps of the solution are well-known (e.g.,
Elbert [i1]). The variational approach is outlined below, following which the
complications added by the nonhomogeneous term f(z) will be addressed. Cur-
rent optimal control texts either assume that f(r) = 0 (e.g., [11], p. 262) or re-
quire that it have a restricted range space (e.g., [12], p. 238). The solution that
follows provides an analytical optimal without imposing such restrictions.

The argument of the cost function J from equation (6) is augmented by the

Lagrange multiplier A times the system equation of motion (3) where
Ay
A= 10
) 0

j= er: (11)

The result J can be expressed as

where the Hamiltonian H is

1 1 .
H = -Z—(er,x + wad) + A(x — Ax — bu = 1) (12)

It is desired to obtain an optimal solution u = w* which minimizes J.
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The first variation of f(x,u, X) is
~ = a
8 = J H s sy + M silar
o | 9% au 0X

which is set equal to zero to minimize J. However, integrating by parts,

J (Qﬁm() dt = —I (AT 8x) dt
o \0X 0

so that the above expression for 5J becomes
A =l {oH oH
8J = J [(——A7)6x+——6u]dt=0 (13)
0 0x du
Both x and du are arbitrary variations, sO 5] = 0 only if

iﬁ—.

r
P A (14a)
oH
— = (14b)
ou

The conditions given by equation (5) still apply.
Solving equations (14a) and (14b) yields

A= Wx — AA (15a)
1 1

u* = —Ab=—bA (15b)
W3 W3

Temporarily eliminating u* produces the result
(16)

where

If -quation (16) is now solved for A in terms of x and f, equation (15b) will then
furnish an expression for the optimal control u*.

As noted before, optimal control texts generally treat the homogeneous prob-
lem (where f(¢) = 0), but they do not provide an analytical solution to the non-
homogeneous system described by equations (5) and (16). Salukvadze has treated
the nonhomogeneous problem [13, 14], but his difficult treatment seems largely to
have remained either uncomprehended or under-appreciated. This method is es-
pecially well-suited to low-frequency disturbance rejection, and has been applied
below to the present problem.
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The homogeneous solution to equation (15), where f = 0, is

X A} %o
NERN i

The four eigenvalues of A may be found to be, in ascending order of real parts,

- 2 _ 112\ 112
by = _( B+ (le 4B2) ) (182)
_ _ 2 172\ 172
o = __( B (B; 48:) ) (18b)
p3 = —H (18¢)
pe =~ (18d)

p==-5-= (19a)

and

5
a Wi k

b= pi- o2 ) a9

m'wy m

The eigenvectors of A4 corresponding to the respective eigenvalues ., may be
chosen to be

1
MKk
P, = RAIN __Yll_ + yily: + i) \ (20a)
i Y3k« Y3
yi 4+ (y2 + pedie
L Y3

where y1, 72, 73 and v, are defined below:

k

yi = (20b)
m
[

Y= (20c)
m

2

= (20d)
mwis

Y4 = Wi (20e)

Using equations (18) through (20) with equation (17) the solution to the homoge-
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neous system is

{x} 3 {cle“"p,, + cae*¥psy, + cie Hipy + ae"‘"pa,}
h

- 21)
A cie*ipy, + 26", + caeTHpy, + cae My, (

with p, = {pf,p&,}7, k = 1,...,4 and where c,, ..., ¢4 are arbitrary constants.
Application of the variation of parameters method with the terminal con-
ditions (5b, ¢) leads to the general solution of the non-homogeneous system, with
two constants of integration yet undetermined.
If the two constants of integration are eliminated by solving for A in terms of
x and f, the general solutions for A, and A, become:

A= iy Eaxs + Eie TR e (22a)
Ay = §5X1 + Ef,Xz + §7C Blale fge_“j (22b)

in which the &’s are functions of the eigenvalues and eigenvectors of /f and of
the disturbance f(¢).

The Solution Form

Using the fact that
1
u*(t) = —b’A  [cf. (15b)] (23)
W3
the optimal control is found to be

utt) = mxi + naxz + n;e"‘"Je“"f;(t)dt + me"‘z‘J‘e“’fg(t)dt (24a)

where
-m{ k
n = —(_ = I»Llﬂ-z) (24b)
a \m
-m{c
= —(— +pt #2) (24¢)
a \m
1 k
m=ﬂ( )(uf+—m+——) (24d)
a\py — p m
1 c k
ne = _L"_(__)(ﬂ“—msf—) (240)
a \(y — M2 m m

(It should be noted that the feedback gains 7, and 7, are those which would re-
sult from applying standard LQR theory to the homogeneous system equation
x = Ax + bu.) In equation (24) u, and . are the eigenvalues of A with nega-
tive real parts, [see equations (18a,b)] and

A = Ld+ Sd. (24f)
m m

For u, = p; = p [the critically damped case] equations (24a-¢) reduce to
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u*(t) = —‘1—1-(mp.2 - kx, + -};(Zmp - C)[Xz - J e*'fr(t) dt]

By repeated application of the method of integration by parts, the control may
be re-expressed in terms of an infinite sum:

L _lr kr) ® __11 S"
urt) = mxy + mx: t 713(2 (—’}2‘{1#2) + 714(2 (‘in;I_(Q) (25)

r=0 r=0 2

Rewriting f; in terms of d and d, the control function becomes

W) = muxlt) + aA(0) + {% (13 + zu)]d(,)

123! K2
n-1 k
+ 2[(—1)“‘1(1? + m) + (—1)‘——( LT —”,i—,)dm(z)
i=1 m\py M2 m\p K2
+ [(—1)"“—6—(2% + —n—:)]d"”(t) + higher order terms (26)
m \ m 3

This may be written in a more appealing form as
u*(t) = cpx(t) + c.x(t) + cod(t) + cdld(t) + higher order terms (27)

in which the constant coefficients cp, €v, Caos and ¢y may be defined from equa-
tions (24) and (26). Clearly, if the infinite sums converge rapidly enough, the op-
timal control can be approximated by

W) = cpx(t) + e k() + cod(t) + cand(®) (28)

For very low frequency disturbances the higher order terms in equation (26) are
negligibly small, and the control (28) closely approximates the optimal. If, in
fact, the second- and higher-order derivatives of d(¢) are identically zero, the ap-
proximation is exact. It can be shown that for the critically damped closed loop
system the eigenvalues are real and equal, and that the convergence is more
rapid than for the overdamped system. Further, as the closed-loop system eigen-
values become more negative the convergence speed goes up as well.

Control Evaluation ’
Physical Realizability of the Control

The control (25) is physically realizable, if the states and sufficient derivatives
of d(t) are accessible (or estimable by an observer), and if the higher order terms
are negligible. It is not necessary that the eigenvalues be real, although the proof
of this requires a mor¢ general linear-algebra or state-transition-matrix approach.

If values are assigned to the system parameters, associated controller gains can
be evaluated. Suppose that m = 100 1bm, k = 0.3 1bf/ft, c = 0 Ibf-sec/ft, and
a = 10 Ibf/Amp. With w3 arbitrarily set at 1 and wy, varied, associated integer
values of w, can be found below which the eigenvalues u, and u: will always be
real. Such values are tabulated in Table 1. Stated otherwise, the tabulated values
of the weights wy, and wy, are those integer values (for the sake of simplicity) for
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TABLE 1. Optimat F/B and F/F Gains for Selected State Variable and Control Weightings
System Parameters: m = 100 lbm, ¢ = 0.000622 Ibf-sec/ft ({ = 0.1%), k = 0.3 Ibf/ft,
a = 10 Ibf/amp

Weights F/B Gains F/F Gains
“1a | Y1b | %3 G Gy Cao Cat Ca2 Ca3 Caq Cas
2 141 1.3845 1.3637 Il 0.0294 | ~0.0006 | -0.0070 | -0.0067 [ -0.0049 | -0.0032
10 241 3.1324 1.9863 || 0.0297 | -0.0001 | -0.0030 | -0.0019 | -0.0009 | -0.0004
23 311 4.7659 2.4413 || 0.0298 | -0.0000 | -0.0020 | —0.0010 | -0.0004 | -0.0001
41 411 6.3732 2.8210 || 0.0299 0.0000 { -0.0015 | —0.0007 | -0.0002 | -0.0001
64 511 7.9701 3.1544 1| 0.0299 0.0000 | -0.0012 | -0.0005 | -0.0001 | -0.0000
92 6|1 9.5617 3.4352 || 0.0299 0.0000 | -0.0010 | -0.0004 | -0.0001 | -0.0000
126 T 11.1950 3.7354 || 0.0299 0.0000 | -0.0008 | -0.0003 | -0.0001 | -0.0000
165 811 12.8153 3.9949 || 0.0299 0.0000 | ~0.0007 | —0.0002 | -0.0001 | -0.0000
209 91 14.4269 4.2380 || 0.0299 0.0000 | —0.0006 | —0.0002 | -0.0000 | —0.0000
258 10 |1 16.0324 1.4674 || 0.0299 0.0000 | -0.0006 | —0.0002 | -0.0000 | -0.0000
581 1571 24.0740 5.4729 || 0.0300 0.0001 | -0.0004 | -0.0001 | -0.0000 ;| -0.0000
1034 20 )1 32.1259 6.3209 || 0.0300 0.0001 | -0.0003 | -0.0001 | -0.0000 | -0.0000
1617 25 | 1 40.1819 7.0680 || 0.0300 0.0001 { -0.0002 | -0.0000 | -0.0000 | -0.0000
2329 30 |1 48.2297 7.743t || 0.0300 0.0001 | <0.0002 | -0.0000 | -0.0000 | -0.0000
3171 3511 56.2816 8.3640 || 0.0300 0.0001 | -0.0002 | -0.0000 | -0.0000 | -0.0000
4143 40 {1 64.3361 §.9420 || 0.0300 0.0001 [ -0.0001 | ~0.0000 | -0.0000 ; -0.0000
9325 60 | 1 96.5360 | 10.9526 || 0.0300 0.0001 | -0.0001 | -0.0000 | -0.0000 | -0.0000

which the closed loop system is closest to being critically damped without being
underdamped. Corresponding controller feedback and feed-forward gains (for
the first five derivatives) are also included.

The states x(¢) and %(¢) and the derivatives d®(¢), d"(¢), and d'?(¢) are clearly
available for an Earth-based system. However, in space, the only absolute mea-
surements which can be directly available are X(¢) and d(r), from which x(1), d(t)
and x(r), d(¢) are obtainable only by successive integration(s). Rearrangement of
equation (28) into

w*(t) = (¢, + cao)x(t) + (¢, + ca)X(t) — calx(t) = d(0)] — calx(t) - d(‘)] (29)
or
uX(r) = (c, + cp)d(t) + (¢, + C,“)d ) + ¢ [x(t) — d(0)] + c.[x(t) - d(r)] (30)

obviates the need for one accelerometer, but one accelerometer plus two inte-
grations remain necessary for either the platform or the experiment. Since
[x(t) — d(1)] (or one of its integrals) has not been weighted in the performance
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index J, experiment drift will be a problem that must be corrected either by an-
other control loop or by a change of system states. The latter could be accom-
plished by incorporating an accelerometer attached to the experiment into the
state equation. Alternatively, one could append an integrator to the plant, in-
clude the current i(f) as a third state, and optimize the control di/dt. But for the
sake of simplicity (i.e., fewer states) the former has been assumed (without devel-
opment) in this paper.

The higher order terms of the control [equations (25) and (26)] can be ne-
glected, for low frequencies, if the eigenvalues u, and u; are of sufficient mod-
ulus. These eigenvalues, in turn, are under the control of the designer,
determined by his choice of weights wi, W, and ws. It is apparent from
equation (25) that u*(¢) essentially reduces to two alternating power series. For a
sinusoidal disturbance of frequency w the series form of the control converges for
lwjw) <1 (i = 1,2). It can be shown that each alternating power series con-
verges like = o (= 1) (w/w)”. With “low” frequency disturbances (i.e., small rela-
tive to system closed loop eigenvalues) a control formed by series truncation very
closely approximates the optimal.

For example, suppose that the normalized frequencies |w/u.| for a sinusoidal
disturbance are less than 1/5, and that only the feedforward control terms ¢ od(1)
and c,,d(t) are included with the feedback terms. Even so, the feedforward por-
tion of the truncated control, at any time ¢, will be a current that is still within
4% [i.e., (1/5)] of the feedforward portion of the actual optimal. If the normal-
ized frequencies are below 1/10, this approximation error will be less than 1%.

_ Table 1 shows that the gains ¢4 of higher order derivatives d"(t) [see equa-

tion (26) for algebraic representations] are, in fact, quite small.

In some circumstances there may be design constraints which prevent the de-
signer from selecting weights that will lead to sufficiently rapid convergence.
However, since convergence occurs rapidly even for eigenvalues of relatively
small modulus (Jo/u.| < 1/3), in a great many cases the designer will have much
latitude in his choice of weights. For “Jow” frequency disturbances, in these
cases, a control which includes only one or two feedforward terms will be “close”
to the optimal. These frequencies will be well-attenuated.

Higher frequency disturbances will also be well-attenuated, provided the
input-to-output transfer function(s) are proper in the Laplace Transform variable
s. This will not be the case for the present problem if more than three feedfor-
ward gains (Cao, Ca1, Ca2) A€ included in the control. Practically, this means that
only proportional and first-derivative feedforward [equation (25) withr = 0,1 0r
equation (26) with n = 2] should be added to the feedback control terms. As will
be seen shortly, however, adding even the proportional feedforward term(s) can
dramatically improve the disturbance rejection over that afforded by LQR feed-
back alone.

Transfer Function and Block Diagram

Neglecting the higher order terms, the transfer function between input and
output accelerations or displacements is



252 Hampton, Grodsinsky, Allaire, Lewis, and Knospe
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a
and a block diagram of the controlled system can be drawn as in Fig. 4.
Control Stability, Stability Robustness, and General Robustness

Since the control feedback gains are the same as those obtained by solution of
the standard Linear Quadratic Regulator (LQR) problem, the closed loop system
is stable and enjoys the stability robustness characteristics guaranteed by the
(LQR) approach to optimality, viz., a minimum of 60° phase margin, infinite
positive gain margin, and 6 dB negative gain margin [12]. Additionally, numeri-
cal checks indicate that it enjoys substantial insensitivity, or general robustness
to uncertainties in k, ¢, and m, as indicated by Table 2 and Figs. 5 through 12. By
comparing the Bode plots of Figs. 5, 7, 9, and 11 (corresponding to controls using
both LQR F/B and proportional F/F) with those of Figs. 6, 8, 10, and 12, respec-
tively (corresponding to controls using LOR E/B only), one can see that adding
feed-forward substantially improves disturbance rejection at low frequencies. For
example a comparison of Fig. 5 with Fig. 6 indicates that the optimal control
method described above can lead to acceleration reductions of greater than four
orders of magnitude for all frequencies. This reduction is more than two orders
of magnitude below that afforded by LOR feedback alone at the lower frequen-
cies, i.e., those most heavily weighted in the performance index.

The order of the reduction is eventually limited by control cost, of course,
probably in terms either of actuator-related limitations (such as heat-removal or
force-generation requirements) or of power limitations (especially in a space-

e
32

FIG. 4. System Block Diagram.
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Concluding Remarks

This paper has applied an existing method for obtaining an optimal control to
the microgravity platform isolation problem, for which the disturbances to be
rejected are low-frequency accelerations. The system was assumed to be repre-
sentable in the form x = Ax + bu + f, with quadratic cost function J =
/¢ (x"Wix + wy’)dt and diagonal weighting matrix W,. The resultant control
law was found to be simple, stable, robust, and physically realizable. Further it
was shown to have excellent acceleration- and displacement-attenuation charac-
teristics, and to be frequency-weighted toward the low end of the acceleration
spectrum.

By making an appropriate choice of states, along with the use of frequency
weighting, the method can be extended to the case for which only relative posi-
tions and absolute accelerations are available. With this extension one can then
weight relative displacements in the performance index. [9] Additionally, since
absolute positions and velocities will then not appear as states, accelerometer
drift (which affects integrations) will no longer be problematic. Any one of a
number of noncontacting relative displacement sensors would be suitable for this
application (e.g., eddy current probes, photoelectric sensors, capacitance probes,
Hall-effect probes).

The approach as presented is algebraically intensive, but symbolic manipula-
tors can be used to ease the algebraic labors. Further, since the method produces
feedback gains identical to those obtained by the LQR approach to optimality,
numerical computation to those gains is easily accomplished, even for large sys-
tems. The feed-forward gains can be found numerically with comparable ease.

Acknowledgments

The authors would like to recognize NASA for partial funding of this work, Dr. Eric
Maslen at the University of Virginia for his many helpful control-related suggestions at
problem points and regarding future work, and Dr. Gerald Brown of NASA Lewis for his
insights into the microgravity isolation problem in an orbital environment.

References

[11 HAMACHER, H., JILG, R., and MERBOLD, U. “Analysis of Microgravity Measure-
ments Performed During D1,” 6th European Symposium on Materials Sciences Under Mi-
crogravity Conditions, Bordeaux, December 2-5, 1986.

[2] NEL:ON, E.S. *An Examination of Anticipated g-Jitter on Space Station and Its Effects
on Materials Processes,” NASA TM-103775, April 1991.

[3] HOSHI, SEIKO “Summary of NASDA Activities in Vibration Isolation Technology,” Pro-
ceedings of the International Workshop on Vibration fsolation Technology for Microgravity Sci-
ence Applications, NASA Lewis Research Center, Cleveland, Ohio, Aprit 23-25, 1991.

[4] ALEXANDER, J. IRWAN D. “Experiment Sensitivity: Determination of Requirements
for Vibratiun Isolation,” Vibration Isolation Technology Workshop, NASA Lewis Research
Center, September 28-29, 1988.

[5] GRODINSKY, CARLOS M. “Development and Approach to Low-Frequency Microgravity
Isolation Systems,” NASA Technical Paper 2984, August 1990.

[6] ALLAN,A.P.,and KNOSPE,C.R. "A Six Degree-of-Freedom Magnetic Bearing for Micro-
gravity Vibration Isolation,” Proceedings of the International Symposium on Magnetic Suspen-
sion Technology, NASA Langley Research Center, Hampton, Virginia, August 19-23, 1991



Optimal Microgravity Vibration Isolation: An Algebraic Introduction

M
(8
11

(10}
- (1]
(12]
(13]

{14)

(15]
(16]

259

KNOSPE, C. R., HAMPTON, R. D.,and ALLAIRE, P.E. «Control Issues of Microgravity
Vibration Isolation,” Acta Astronautica. Vol. 25, No. 11, November 1991. pp. 687-697.
SAGE, A.P., and WHITE, C.C., 111 Optimum Systems Control, 2nd edition, Prentice Hall,
Inc., Englewood Cliffs, New Jersey, 1977.

HAMPTON, R. DAVID, and KNOSPE, CARL R. ~Extended H2 Synthesis for Multiple-
Degree-of-Freedom Controllers,” Proceedings of the International Symposium on Magnetic
Suspension Technology, NASA Langley Research Center, Hampton, Virginia, August 19-23,
1991.

TOMIZUKA, M. “Optimal Continuous Finite Preview Problem,” [EEE Transactions on
Automatic Control, Vol. AC-20, No. 3, June 1975, pp. 362-365.

ELBERT, THEODORE F. Estimation and Control of Systems, van Nostrand Reinhold
Company Inc., New York, 1984, chapter 6: “Qptimal Control of Dynamic Systems.”
ANDERSON, B.D.O., and MOORE, J.B. Linear Optimal Control, Prentice Hall. Engle-
wood Cliffs, New Jersey, 1971, pp. 70-74.

SALUKVADZE, M.E. “Analytic Design of Regulators (Constant Disturbances),” Av-
omatika i Telemakhanika, Vol. 22, No. 10, February 1961, pp- 1279-1287; translation in Au-
tomation and Remote Control, Vol. 22, No. 10, October 1961, pp. 1147-1155.
SALUKVADZE,M.E. “The Analytical Design of an Optimal Control in the Case of Con-
stantly Acting Disturbances,” Aviomatika i Telemakhanika, Vol. 23, No. 6, July 1962,
PP 721-731; translation in Automation and Remote Control, Vol. 23, No. 6, June 1962,
pp. 657-667.

POTTER, J.E. "Matrix Quadratic Solutions,” SIAM Journal of Applied Mathematics,
Vol. 14, No. 3, May 1966, pp- 496-501.

LAUB. A.J. “A Schur method for solving algebraic Riccati equations,” [EEE Transactions
on Automatic Control, Vol. AC-24. No. 6, December 1979, pp. 913-921.



EXTENDED H,, SYNTHESIS
FOR MULTIPLE DEGREE—-OF-FREEDOM CONTROLLERS

R. David Hampton
Carl R. Knospe

Center for Innovative Technolog
University of Virginia

August 16, 1991

PREGEDING PAGE BULANK NOT FILMED

v '/g//

fx’J

363



SUMMARY

H, synthesis techniques are developed for a general multiple—input—multiple—o
(MIMO) system subject to both stochastic emdg deterministli)c dis?urbances.p Thlgpllito
synthesis is extended by incorporation of anticipated disturbance power——spectral—densit&
mformthon into the controller—design process, as well as by frequency weightings of
generalized coordinates and control inputs. The methodology is applied to a simple
single—input—multiple—output (SIMO) problem, analogous to the type of vibration
isolation problem anticipated in microgravity research experiments.

INTRODUCTION

The vibration environment onboard current and planned manned orbiters requires
isolation for microgravity science experiments. The disturbance frequencies are sufficiently
low, and the attenuation requirements sufficiently great, so as to preclude a solely passive
isolation system (ref. 1).

Since the disturbances to be attenuated are three—dimensional (ref 2, p.2), the
isolation actuator must be capable of acting over six degrees of freedom. The requisite
multiple—degree—of—freedom (MDOF) controller is much more difficult to design than a
single—degree—of—freedom (SDOF) controller, because the isolation system has many
inputs (actuator forces) and outputs (measured displacements and accelerations).
Multiple—input—multiple—output (MIMO) designs can be very susceptible to unmodeled
cross—coupling between channels of input or output (ref. 3), a problem not encountered in
SDOF design. The control forces used must therefore be properly coordinated if the
controller's performance is to be sufficiently insensitive to unmodeled dynamics (i.e.,
robust). The design of a robust MIMO control system requires the iterative use of
synthesis and analysis tools, the former for controller design and the latter for system
performance and stability evaluation (ref. 4).

A particular vibration isolation problem may involve different kinds of undesirable
outputs, such as excessive absolute accelerations and unacceptable relative displacements.
Some of these undesired outputs may be more important than others, and the degree of
undesirability may vary with direction or frequency. For example, rattlespace constraints
may be highly directional. Or a crystal—growth experiment may be particularly sensitive
to accelerations at certain frequencies (ref. 2, p. 7) or in certain directions. One of the

PREGEDING PAGE BLANK NOT FILMED
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soals. then, must be to design a controller capable of minimizing selected plant outputs as
dictated by these considerations.

Plant outputs, however, cannot be minimized apart from consideration of the
associated control costs, because any active control both consumes power and releases heat.
Since both of these costs are of concern in a space environment, the control effort used
should not be excessive. And at higher frequencies control effort should also be minimized
‘1 order to limit controller bandwidth for the sake of robustness concerns (ref. 5, p. 218).

This paper describes a design procedure, known as extended Hy synthesis (ref. 5, p.
267), for developing active isolation system controllers. A single—input—multiple—output
design problem is then addressed using the presented procedure.

BASIC PROBLEM AND SOLUTION

Problem Statement

We will use Linear Quadratic Gaussian (LQG) theory to design the MDOF
controller. This theory has been extensively studied and ussed. LQG is chosen as a
synthesis  procedure since the quadratic performance index relates well to
root—mean—square statistics and power spectral density.

When linearized, the differential equations of motion of the plant can be
representable in state—space form by the first order system of equations

x = Ax + Bu + Edfq + Esws la%
y = Cx + Du 1b
z=y+ Mn lc)

where x is the state vector, y is the output vector, z is the measurement vector, u_is the
control vector, f4 is a known or measurable disturbance vector, and ws and n are process—
and sensor noise respectively. We begin by making a series of reasonable mathematical
assumptions. Assume that not all states are accessible, so that rank C < dim x. Let the
initial conditions on the state vector be x (0) = Xo; let Xo, Ws, 1, and fg be independent and
bounded; let xo be Gaussian (ref. 6, p. 272); and let n and ws be zero—mean white
Gaussian, with cov[ws(t),ws(7)] = Vi6(t—7) and cov[n(t), n(7)] = Vsé(t—7) (ref. 6, p. 272).
Assume that {A,B} and {A,Es Vil/2} are stabilizable, where V; = Vﬂ/? Vi1/2* (the
asterisk here means "conjugate transpose"); and that {C,A} is detectable (ref. 5, p. 226).
Let V; and V3 be positive semidefinite (PSD) and positive definite (PD), respectively.

We choose a performance index of the form
1 T W, Wo <
J=8{lim1| <[£ o' {ﬁ}> dt 2)
T—o0 = 0 W w,| 2

where W, is PSD and W3 is PD (ref. 6; pp. 272, 276). "&" is the expected—value operator,
needed since the system is excited stochastically by ws. The cost rate functional form
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. 1 . ]. 1 . . . .
(with ',} i m ") is used to allow both for the white noise disturbance ws and for the
—00
non—dwindling disturbance fg.

If Z(t) is defined by Z(t)= {2(7), 0 < 7 < t}; and if u(t) = x[t.Z(t).fa] defines the set
of admissible controls (ref. 6, p. 272), where x is a vector operator that is linear in terms of
its arguments; the basic problem objective is to find an admissible control function u™(t)
which” minimizes J with respect to the set of admissible control functions u(t). [The
asterisk here indicates optimality, in the sense defined by Eqn. (2).] -

Problem Decomposition

The basic problem, as stated in Eqns. (1) and (2), can be decomposed into two
parallel subproblems, one stochastic and the other deterministic. Suppose that x = Xs +
x4, where x; is the portion of the system response due to disturbance ws, and where x4 is
the portion of the response due to f4. Let vs, vd, zs, zd, Zs» Zd, Us, and ug be
correspondingly defined. o T

Wi Wo

T
.1
ThenJ = lim x| ‘@"<[x'+x‘]
Tooo T 0{ s Td

Xs + Xd >
W W, ST } d (32)

can be reduced to J = Jg + Jg4, where

! T l ' Wi W, <
J = %igTIO{d[ﬁsﬂ_Xsl - {g})}dc (3b)
2 3
o T ) ' Wi Wy X4
nd Jg=Limpf (ls+ ) W, (%) at (3¢)

The problem is now separable into a stochastic— and a deterministic subproblem, each of
which has an analytical solution. The two subproblems are stated, and their solutions
presented (without development) below.

Stochastic Subproblem and Solution

Statement:
Given: Xs = A x5 + Bug + Es ws (4a)
ys = Cxs+ Dus (rank C <dim Xs) (4b)
zs = ys + Mn (4c)

{A,B} is stabilizable, {C.A} is detectable
Xs(0) = xs0 is Gaussian with zero mean
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Find:

and n are independent and bounded

Xs0s Ws»
such that cov[ws(t), ws(m)] = V1é(t—7) (4d)
and cov[n(t), n(7)] = V3b(t—7) (4e)
where V, is PSD and V3 is PD

1 T [ ] Wi W, {‘(S} (
Jo=lim %8| <xg, ‘—>dt 4f)
T T 0 VT T Wi w

where W is PSD and W3 is PD
Zs(t) = {zs(r), 0 < T <t} us(t) = xs[t,Zs(t)] (4g)
defines the set of admissible controls

An admissible control function ug*(t) which minimizes Js with respect
to the admissible control functions us(t)

Solution (See ref. 6, pp. 272—277; and ref. 7, ch. 11):

Es* (t)

Statement:

Given:

368

=K gs(t) (5a)

where Xs is an estimate of xs using a Luenberger observer (ref. 7, pp.
288—289) having observer gain matrix L '
K = W3l (B'P + Wy') (5b)

P is the unique PD solution to
PA + A'P — (PB + W») WEI(PB + Wy)' + Wy =0 (5¢)
L = QC' (M V3 M')~! (5d)

Q is the unique PD solution to
AQ + QA'—=QC' (M V3M‘)—1CQ + Es VIE{ =0 (5e)

P exists if {A,B} is stabilizable and {C,A} is detectable
or if the system is asymptotically stable

Q exists if {A, Es V11/2} is stabilizable and {C,A} is detectable
or if the system 1s asymptotically stable

Deterministic Subproblem and Solution

Xd = A x4+ Bug+ Eqfa (6a)
ya=Cxd+ Dug (rank C < dim xgq) (6b)
zd = yd (6¢)
{A,B} is stabilizable, {C,A} is detectable

xd(0) = Xdo



xdo and fq are independent and bounded

1 JT [ W, W,
Ja=lim < X4 Ug
T-00 T 0

(50}) a 6d

Wi W,| d (6d)
where W is PSD and W3 is PD

Zq = {zd(7), 0 < 7 <t} ug(t) = xqlt, Za(t). fq] (6e)

defines the set of admissible controls

Find: An admissible control function ug*(t) which minimizes J4 with respect to the
set of admissible control functions ug(t)

Solution (refs. 8; 9; and 10, pp. 156—157):
ug* (1) = —K xq — W3' B’ | exp[-R'(t=7)] PEq fa(7) dr (7a)

where K = W3' (B'P + W)) (7b)

P is the unique PD solution to
PA + A'P — (PB + W) W3 (PB + Wa)' + W, =0 (7¢)

P exists if {A,B} is stabilizable and {C,A} is detectable
or if the system is asymptotically stable

Combined Solution to Basic Problem

When rank C < dim x4, an estimate Xq of xq must be used in the feedback. If one uses
an asymptotic (i.e., Luenberger) observer, with gains L chosen to give an optimal solution
to the stochastic subproblem, he can then combine the stochastic and deterministic
subproblem solutions so as to use the same observer and regulator. This allows the optimal
solution (feedback portion) to be realized physically. If such a choice is made,

u*(t) = u:‘i(t) +g("j‘(t) = —K X(t) —WEI B'joto exp[—A'(t—7)] PEq fa(7)d7 (8a)

where X is an estimate of x using a Luenberger observer
having observer gain matrix L
K = W3 (B'P + Wy) (8b)
L = QC'(M Vs M) (8¢)
P.Q, and A are as defined previously

If f and n are correlated by & [fs(t), n(7)] = Va6(t—7), then the above solution has the
modification (ref. 7, pp. 414—417) that

L = (QC' + Eg Vo)(M VaM") (8d)
where Q is the unique PD solution to
XQ + QX' — QC'(M VaM')'CQ + EViEL =0 (8e)
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for X = A — EgVaV3' C (s)
and ¥y = Vi = V2 V' Vo (3¢)

PROBLEM EXTENSIONS

Frequency Weighting

Suppose now that it is desired to frequency weight the states x and the control u in
the cost rate functional, so that the weightings vary with frequency (ref. 11). Let x be
considered to be the input to a filter #i(s) of which !x is the output, and let #i(s) have a

state—space representation defined by {A1,B1,C1,Di} [ie., #1(s) = Cl(sl—Al)_lBl+ Dy.

Then
z1= A1z +Bix (9a)
x=Crzi + Dix (9b)
expresses x in terms of x, employing pseudostates zy. Similarly, if u is considered to be the
input to a filter #3(s) of which lu is the output, and if #3(s) has a state—space
representation defined by {A2,B2,C2,D2}, 'u can be expressed in terms of u, employing

pseudostates zo:

Ayza+ Bau (10a)
C + D2 uo (10b)

Suppose now that these frequency—weighted states (x) and controls (lu) are further
weighted by constant weighting matrices Wy and Wa, respectively. The resulting state
equations and performance index are as follows:

In3.
[$5-]
i
|08
[S=]
o
— |,—-

,_.
=
Il
13
1N
)
t

g_: 1A§+ 1BE+ 1Edfd + IES _\Es (113)
y=1Cx+Du 11b
z=y+Mn llc
T Wy 'Wa) <
y= il (F ] () a (11d)
T-00 = 0 W, W3] =
- |2
where X = |Z1 (11e)
2

(11f)
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B

1C = [C 0 0] (11h)
Eq

1Eq= 10 (111)
0
Es

Es = O (11])

D,'W;D; D{'W;Cy 0O

W, = |C/W,D; CYWiC O (11K)
Cy'W3Cs
W, = 0 (111)
Cy'W3Do

Disturbance Accommodation

Suppose further that the stochastic disturbance is not wg but fs, where fs is a
stochastically modeled dmturbance with power spectral density
St(w) = S/ 2 (Jw)Sf1/° (jw). Defining H(jw) by S¢t/2(jw) Vi!/?, one can consider fs to be
the output of a filter Hy(s) excited by zero—mean white Gaussian noise ws (ref. 12) with
power Vy (i.e., cov[ws(t), ws(7)] = Vi 6(t—7).
In state—space form,

E=As £+ ws (12a)
s = Cs(sI — Ag) " (12b)
such that Hi(s) = Cs(sl — As)—1 (12¢)

Incorporating these new pseudostates (£) into the state equations and performance index
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yields
X = 2A§+2Bg_+2Edfd+2Esﬂs
y=12C § +Du
z=y+Mn
Ty - Wy 'Wal
=g (lim ) (ix'u] (3}) at
T-oco = 0 W) W, =
where ;_<= {E}

A O O EsCs

O 0O Ay O
O 0 O Ag
B
B = gQ
0
2C =[C 0 0 0]
Eqg
24| O
0
0
0]
2F, Eg
I
DW,D; D{W,C;
*Wi=\ciwD, CIW,Cy
(0] 0]
0 0
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0O 0]
0O O
CiW3Cy O

O O |

(13a)

(13b)
(13c)

(13d)

(13e)

(13)



0 ]

Wy = 0 (13m)
Ca'W3Do
e

2W3 = [Da'W3Dy] (13n)

The solution to this problem has been given previously.

SYNTHESIS MODEL

The model given at the close of the previous section is the model from which the
controller is synthesized. The synthesis involves the determination of observer gains L and
regulator feedback gains K. Preview gains Kpp can also be determined, if desired, to

approximate the Duhamel integral term of the optimal control. One approach to
determining these preview gains has been presented in reference 9. Further study of the
determination and use of these gains is nceded.

ANALYSIS MODEL
Once the controller has been selected, it must be connected to the actual plant and
the resulting "analysis model" used to evaluate closed—loop—system performance and

stability. For constant gain matrices K, L, and KFF the open loop transfer function from

Y to Upp [=-K XJ is

S Fe—"
B
A B

where the form
C D

indicates C(sl — A)—1 B + D. The closed loop transfer functions, respectively, from Fg and
Fs to X, are

A -BK Eq+BKpp
2A_2 R W4 2 <
AL () = |LC ATBKE C |2BKpp (11b)
= o | o |
A —BK  |Es+BKpp
L . :
and ;sg £ (5) = |1C 2A2BK-L2C| ?BKpp (14c)
K o | o |
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The return ratio matrices (ref. 4) at the Y(s) and U(s) nodes, respectively, for D =

0, are )
A2-BK-12C 0 | L
La(s) = | —BK A o (15a)
0 < | o]
2A2BK-12C LC | O
Lis)=| O A | B (15b)
K o |o]

The corresponding return difference matrices and inverse return difference matrices (ref. 4)
are as follows:

2ABK-12C O | L }
I+ 1Ls(s)=| -BK AloO (15¢)
| o |1}
2A2BK-12C LC | O ]
[+ Li(s) = 0 A | B (15d)
K o | 1]
[+ L3(s) = 1+ [K(sI—2A 4 2B K + L2)"'L) 7 {C(st — AYT'B) (15e)
[+ Lis) = 1+ [C(sT = A) "B YK (ST —2A + 2B K + L2¢) 'L (15f)

The singular values of these matrices can be used to evaluate system noise and disturbance
attenuation, stability margins, and sensitivity (ref. 4). Iterative application of the
synthesis— and analysis models can be used to produce the desired controller.

EXAMPLE PROBLEM

Suppose one wishes to develop a controller to isolate a space experiment of mass m

and position x(t), from a unidirectional acceleration disturbance d(t). Assume that a wall
having position d(t) acts on m through an umbilical with stiffness k and damping c. (See
figure 1). Suppose further that rattlespace constraints require the transmissibility to be

unity below 10_3 Iz, and that it is desired to attenuate the disturbance by at least two
orders of magnitude between 0.05 and 10 Hz. Let a linear actuator, applying a force that
varies with control current i, be connected between the wall and the experiment in parallel
with the umbilical.

For this problem, it is desirable at low frequencies to penalize the relative
displacement of the experiment heavily, so that the experiment "tracks" the wall. At
intermediate frequencies, however, the absolute acceleration of the experiment should be
heavily penalized to accomplish the desired disturbance rejection. The state space model,
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then. should have relative position x—d and absolute acceleration X as states, allowing them

to be frequency—weighted in the performance index.

The system equation of motion is

A P _"_. B '_'k-ﬂ_c A_K
¥ = —k(x—d)—c(x—d) — xi, where k = mhe=randx = oo (16a)
In state—space form, the equations can be written as
X1 0 1 0 X1 0 0 (16b)
b=l-k  —¢ 0 |Hxepi—w i+ {-1{d
X3 —whk —wpC —wy X3l |—Wwhx 0
v 100 [M (16¢)
vof Tlo00] 17
N3
) i)y [m (164)
Z9 - Yo no
where x(t) = x(t) —d(t)
xa(t) = x(t) —d(t) (16e)
X3(s) = (Szi‘)h) s2X(s), wh high,
so that x3(t)~ x(t) for w<<wy
Frequency—weighting the states so that
1 :
Xu)]  Jes g 0 Xi(s) (17a)
Xa(s)p =10 1 Os Xa(s)
X,5)) |0 ' EFen) (5Fen)] (Xa(s)

gwhere w; < w») results in a performance index that penalizes x; more highly at low

requencies and x3 more highly at intermediate frequencies. If the control is
frequency—weighted so that

W(s) = (gm,) UGs) [wi<ea] (17b)
at higher frequencies the control will be more heavily penalized. This is desirable both for

the sake of robustness and since x3 approximates x only at frequencies sufficiently below
wh. Finally, let the input acceleration be considered to come from zero—mean Gaussian

i - wf
white noise filtered through Stwr
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The resultant state equations are as indicated on page 8, where

[0 0 0
Ay = |0 —(witwn) —wiwn (18a)
0 1 0

By (18b)
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o
o o O
o - O

Ci=10 0 0 (18¢)

0 0
D=0 1 0 | (18d)
00

,f
o

QW >
[T ST 1)

=fe)--p e
|
|
£

v 0

;
) = 0.001 s(z-7)
] = 0.001 S(t- 7).

Since A, has a zero [lst] column, 2A will have a corresponding zero [4th] column. To make
the frequency—weighted system {2C,2A} observable, obtain | (x—d) dt as a measured state
(i.e., the first pseudostate, 711) and modify 2C accordingly. Let the measurement noise
associated with Zy; be n3, such that

cov [n3(t), n3(r)] = 0.0001

Assume that cov [ws(t), wa
cov [ny(t), my(7
and cov t), na( 7

i]zl §(t-7)

n2

Gain matrix W, can be varied to "tune" the optimal control to give the most

satisfactory results. The transmissiblity between d(t) and X(t) is given in figure 2. The
control uses feedback (and observer) gains obtained from system parameters and
weightings as indicated on the figure. Note that the low—frequency transmissibility is
ulnity, zfxs desired, and that for intermediate frequencies the transmissibility rolls off with a
slope of —1.
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If a different frequency—weighting of x3 is used, it is to be anticipated that the
transmissibility curve will change as well.

w? s
For 1X3(s) = (s+w1%?(s+wg)‘2 Xs(s) (19)

the resultant selected transmissibility curve is given in figure 3. The low—frequency
transmissibility again, is unity; but now for the intermediate frequencies the
transmissibility rolls off with a slope of —2, as expected. Adding another pole at wy and at
w to the Xj(s) frequency weighting would further improve the intermediate—frequency
roll—off. The present controller, however, meets the design specifications. )

If state frequency—weightings of 1X,(s) = sifbs Xi(s) (20a)

w? s
2
Stwi)2(s+tws)? Xa(s) (20Db)

and 'X3(s) = 0

are used, the results (figure 4) are similar to those given previously in figure 3. Note that
with this latter choice of frequency weighting however, (i.e., without any"rigid body poles"},
the frequency—weighted system {?C,?AT is observable, without augmenting the actual plant
output y as was previously necessary. Consequently this is the preferred control.

DISCUSSION

H, synthesis, as the example problem indicates, provides a highly versatile
loop—shaping tool. It is especially useful in controller development for SIMO and MIMO
systems, where classical loop—shaping methods are most lacking. Once the designer has
expressed the system equations in terms of states for which he has an intuitive feel, and of
measurable outputs, the design process becomes relatively easy. He frequency weights (i.e.,
filters) the states and control inputs according to his engineering experience and intuition,
to indicate the relative importance of each as a function of frequency. Then he weights
these frequency—weighted states and controls relati e to each other. The Ha synthesis
methodology automatically provides him with a set of regulator and observer gains that are
optimal with respect to the chosen weightings, given a quadratic performance index.
Known aspects of the input disturbances and sensor noise can be incorporated into the
design as well. Singular value checks provide the ability to evaluate system robustness.
With a few iterations, the skillful engineer can complete his design. Excellent computer
software packages already exist to assist in the task.

The frequency weighting tells the Ha synthesis machinery how much "cost" to place
on a state or control input at any frequency, relative to its cost at other frequencies. If, for
example, absolute acceleration is undesirable only in a particular frequency range, that is
where it should be most heavily weighted.  The subsequent weighting of the
frequency—weighted states and control inputs tell the synthesis machinery how much cost
to place on each frequency—weighted state or control relative to the others.
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Subscripts, Superscripts, and Diacritical Marks

ostsubseript 0 Value at time t=0
postsubscript 1 With A,B,C,D.z: related to state—frequency weighting
state—space description
With L: return ratio matrix at control node
With V: process noise covariance
With w,\V, % state (or pseudostate) weightings, applied
subsequent to any frequency weighting
postsubscript 2 With A,B,C,D,z: related to state—frequency—weighting
state—space description
With L: return ratio matrix at output node.
With V,W: cross—weightings

postsubscript 3 With V- measurement noise covariance
With W,%: control weightings

postsubscript d Related to deterministic disturbance

postsubscript { Related to filter for stochastic disturbance

postsubscript s Related to stochastic disturbance

postsuperscript 1/2 Square root or spectral factorization

postsuperscript ' Transpose

postsuperscript -1 Inverse

postsuperscript * Optimum or conjugate transpose

underline __ Vector

overbar — With A: closed loop system dynamic matrix

With x: augmented with frequency—weighting

pseudostates

overhat Augmented with frequency—weighting— and
disturbance—accommodation pseudostates

overtilde ~ Estimated or associated with cross—correlation

presuperscript 1 With x,X.u, or U: frequency—weighted

With other symbols: related to system augmented by
frequency weighting
presuperscript 2 Related to system augmented by frequency—weighting
and disturbance—accommodation
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1. ABSTRACT

It is well-known that the spacecraft environment deviates from a state of
-~ zero gravity due to various random as well as repetitive sources. Science
experiments that require a microgravity environment must therefore be isolated
from these disturbances. Active control of noncontact magnetic actuators enables
such isolation. A one—degree—of—freedom test rig has been constructed to
demonstrate the isolation capability achievable using magnetic actuators. A
cvlindrical mass on noncontacting electromagnetic supports simulates a
microgravity experiment on board an orbiter. Disturbances generated by an
electrodynamic shaker are transmitted to the mass via air dashpots representing
umbilicals. A compact Lorentz actuator has been designed to provide attenuation of
this disturbance.

2. INTRODUCTION

Space exploration was initiated for the investigation of space itself. ranging
from the planetary system to the limits of the universe. Resulting benefits of this
effort include satellite communications and earth observation and imaging systems.
The scope of space exploration widened in the early eighties with the development
of the space shuttle — a system capable of transporting a large cargo to a low earth
- orbit, and recovering the payload or frequently servicing it in space. A parallel
development was the gradual change in the role of man in space, starting with the
primarily technical function of a pilot and evolving into a more active involvement
encompassing interactive work and scientific experimentation in space.
Space—based laboratories like the Skylab and the Spacelab were flown to utilize the
"vanishingly low" gravitational forces available for extended periods of time. The
results, however, were mixed at best, and disappointing in certain cases. This can
- be explained in part by the fact that the environment aboard the spacecrafts
deviates considerably from the ideal of zero gravity due to disturbances produced by
machinery and people on board, thruster fire, and other factors.

The incentives for performing science experiments in space include the
investigation of phenomena that are influenced by gravity on earth, the
development of novel materials and the improvement of processes like crystal

This work was supported in part by the NASA Lewis Research Center and the
Center for Innovative Technology of the Commonwealth of Virginia.
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growth [1]. In theory. a freely orbiting spacecraft offers a state of zero gravity to
objects inside it, since the gravitational force is balanced by the centrifugal force (2).
However, in practice, there are various residual forces that disturb the environment.

Attempts to estimate these residual 'forces have been made in the past few
years [3—1(()}. The orbital microgravity environment can be divided into three
classes, as detailed in Table 1. Quasi—steady accelerations are generated by three
sources — gravity gradient, aerodynamic drag and rotational acceleration. Any
point of an orbiting structure that is at a distance from the structure's center of
mass experiences a gravitational field that is different from that at the spacecraft
center of mass. Aerodvnamic drag due to the earth's atmosphere represents the
absolute lower limit of the achievable background microgravity level, if the effect of
light pressure is neglected. Finally, in order to keep the same vertical orientation on
the space station with respect to the earth, the station must maintain a constant
pitch rate about its center of mass. This creates a centripetal force that results in a
rotational acceleration.

Orbital thruster fire and the steady—state operation of machinery like fans
and pumps on board a spacecraft are among the sources of periodic accelerations,
which occur at known frequencies. Impulsive disturbances like crew push—off and
the start—up and shut—down of machinery create non—periodic accelerations. The
irregular, unpredictable nature of these accelerations complicates attempts at
isolation.

Theoretical acceleration requirements for various processes and experimental
conditions have been investigated 13.7.11]. The common feature of curves depicting
the frequency—dependent requirements is that, for a given process, the acceleration
threshold is lowest from steady-state to about (0.01 — 0.1) Hz. depending upon the
type of experiment. The acceptable acceleration then increases linearly with
increasing frequency, up to (1 — 10) Hz. Subsequently. it increases as the square of
the frequency. The acceleration tolerance also typically scales inversely with the
volume that characterizes the process. The slopes and breakpoints result from
fundamental aspects of a process, and the shape of the curve can be considered to be
characteristic of a family of experiments. The acceleration level thresholds range
from an extreme level of (10-7 — 10-%) g, for some material science and fluid science
experiments, to only 103 g, for the majority of biology and biotechnology
experiments.

A comparison of the microgravity requirements with the actual environment
available on the spacecraft indicates the need for vibration isolation. Moreover, the
frequency range of interest spans several decades, thus requiring the use of multiple
strategies for isolation.

For the high frequency range. passive isolators can serve adequately. Since
these are relatively simple and cheap, they can be placed at each interface between a
disturbance source and the space station. It should be noted that the sensitivity of
various categories of experiments to high frequency disturbances is also
comparatively low.

In the quasi—static frequency range, the extremely low stiffness and large
motion required make attempts at isolation very difficult. Rattlespace constraints
prohibit the occurrence of such large relative motions between the payload and the
spacecraft. This imposes a fundamental limitation upon vibration isolation.
Consequently, efforts at minimizing the input disturbances. like reducing the surface
area presented to the atmosphere so as to reduce atmospheric drag and locating



payloads as close to the spacecraft's center of mass as possible, are necessary.
Owens and Jones have also suggested the possibility of canceling such disturbances

by continuous thruster control of the whole spacecraft [11].

At intermediate frequencies — approximately between 0.01 Hz and 1 Hz —
no passive isolation scheme can be effective due to the displacements and isolation
levels required. Only active vibration isolation at the payload—ﬂpacecraft interface
allows the synthesis of the desired isolator properties and the adjustment of these
properties using a control loop.

The actuator used to implement an active control scheme in the
intermediate frequency range should ideally be noncontacting. The ideas of
acoustic, electrostatic and electromagnetic (Lorentz force) levitation have been
considered in the context of containerless processing of materials in a low gravity
environment [12—15]. The first two techniques are limited to small objects. Lorentz
forces are utilized by placing an electrically conductive sample within a suitably
designed coil excited by a radio frequency current. Currents induced in the sample
interact with the magnetic field of the coil to produce forces that tend to move the
sample away from regions of high magnetic flux density. These currents also tend
to heat the sample, which is often utilized to melt it. However, the inability to
control this heating effect independently of the coil current required for levitation is
3 limitation of this technique. Some unwanted stirring of a melt by the induced
currents also occurs.

Noncontact magnetic actuators, utilizing electromagnets or permanent
magnets, appear to be the best solution for vibration isolation in the intermediate
frequency range [16]. These actuators produce relatively large forces and can be
applied to the isolation of a variety of science experiments. An active magnetic
isolation system can be "tuned" by simply changing control law gains to
accommodate changes in the payload or the expected disturbance environment, or
to produce improved performance once in orbit. Such experiments need only be
enclosed in a container, and can have umbilicals connecting them to the spacecraft.

A Long Action Magnetic Actuator (LAMA) has been proposed for this
purpose {17]. This is a magnetic thrust bearing modified to accommodate longer
strokes than those found in typical industrial applications. The pole—faces are
inclined at an acute angle to the axis of motion, instead of being perpendicular to it.
Detailed studies of magnetic thrust bearing design and use have been made [18—20].
The LAMA would be suitable for those intermediate frequencies that require
motions not exceeding about a hundred miles. Since the forces called for are of the
order of a few pounds at most, such actuators can be quite compact. the size being
primarily determined by the stroke required.

A single—axis magnetic actuator similar to a magnetic thrust bearing has
been described in [21]. The authors compared various sensing options to close the
actuator control loop — gap and current sensing, force sensing and flux sensing. In
their experiment, the authors achieved force linearization using flux feedback. Due
to shaker and accelerometer limitations, the lowest recorded frequency of their
measured data was 5 Hz. A subsequent paper described a similar isolation system
extended to six degrees—of—freedom. called the Fluids Experiment Apparatus
Magnetic Isolation System (FEAMIS) [22].

An interesting dual—mode approach to vibration isolation of large payloads
over long displacements has been discussed in [23]. It was intended to provide the

high performance active isolation of noncontact magnetic suspension technology
without the limitations on articulation imposed by the small air gaps used in such
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systems. Insucha tandem system, a "coarse" motion actuator was controlled as a
followup actuator, always attempting to keep the gap displacement for the magnetic
actuator within its design limits. The magnetic actuator functioned as a "fine’
motion actuator, ignoring the presence of the other, coarse actuator. The
performance requirements on the coarse actuator were not very stringent, since the
imperfections of its motions would be attenuated by the fine actuator.

The operation of microgravity science experiments is likely to require the use
of an umbilical. An example is a plastic tube formed into a helical shape and
carrying a coolant. Acceleration control to reject disturbances caused by the
compliance of the umbilical has been theoretically investigated (24]. The umbilical
was assumed to have stiffness, but not damping. The microgravity quality
deteriorated with increasing umbilical stiffness. as expected. Acceleration control
improved disturbance rejection greatly when compared to position—only control, but
there was a price to be paid in the form of a more complicated control system. An
active umbilical control strategy. ‘n which the extension of the umbilical is
minimized by making one end track the other, was also analyzed. It was found to
be effective in principle and comparable in performance to the acceleration control

loop technique.
3. EXPERIMENTAL RIG

An experimental rig to demonstrate vibration isolation down to microgravity
levels in one degree—of—freedom has been constructed, and is shown in Figures 1 and
2 An innovative long stroke Lorentz actuator, described in detail in the next
section, will be used to implement the isolation scheme.

An electrodynamic shaker with a long, peak—to—peak stroke of 6.25 inches
represents the space platform. The shaker is mounted, via aluminum plates. on a
concrete block resting on the laboratory floor. The shaker can generate sinusoidal,
random or impulse waveforms at frequencies down to DC. thus simulating the
disturbances typically produced on a space station that require active isolation.

The umbilicals connecting a science experiment to the space platform are
expected to be flexible hoses and wires. These will be modeled by air dashpots with
adjustable stiffness and damping coefficients. This type of dashpot has been
evaluated at NASA Lewisin a s‘ingle—degree—of—freedom mass—spring—damper
system in a fixed—fixed mounting configuration [25]. The test indicated the
possibility of a nonlinear stiffness/damping mechanism in these air dashpots. The
vibration isolation rig has been designed so that different kinds of umbilicals may be
employed, including actual hoses used for fluid transfer. This is important, since
very little work has been done to date on vibration ‘solation to microgravity levels
in the presence of an actual physical connection between the experiment and the

space platform.

The long stroke Lorentz actuator, in parallel to the umbilical(s). connects the
shaker armature to the mass representing a microgravity science experiment in
space. This mass is a solid steel cylinder weighing 75 pounds, which is a typical
weight for such an experiment. The cylinder is horizontally suspended in space by
the magnetic forces generated by a noncontact electromagnetic support system.
Similar to radial magnetic bearings, the support system consists of two eight—pole
structures, mounted on a concrete base. at the two ends of the cylindrical mass.
This concrete base is massive compared to the "experiment' mass, and rests on the
same laboratory floor as the separate concrete block on which the shaker is



mounted. Eddy current probes sense the radial position of the cylinder and
complete the feedback loop supplying current to the electromagnets. When the
electromagnetic support System is turned off, the cylinder rests on a pair of
touchdown pedestals made of delrin.

The axial acceleration of the cylinder will be sensed off a sensory plate
mounted at its free end, using a very low frequency accelerometer with a maximum
resolution of 1 p#g. Provision has been made for the use of other types Qf
accelerometers, and the sensing of other states of the system, like position. The
accelerometer signal will be fed to a feedback control circuit that determines the
current required in the electromagnetic actuator to isolate the cylinder from the
disturbances generated by the shaker. A control strategy for such an isolation
System with multiple degrees—of—freedom is discussed in [26].

The background vibration levels on the concrete base on which the cvlinder
is mounted have been measured over twenty—four—hour periods. in both the
horizontal and the vertical directions. These vibrations are of the order of milli—g's,
the quietest period occurring from late in the night to early in the morning.
Operating at this time will vield the highest degree of reproducibility in our results.
Figures 3 and 4 show the frequency spectrum of the background acceleration in the
horizontal and vertical directions. The vertical vibration shows acceleration
components corresponding to natural frequencies of the mounting plate. The

horizontal vibration has significant content at 45 Hz. The authors believe this i a
floor mode.

4. THE LONG-STROKE LORENTZ ACTUATOR

A compact long—stroke Lorentz Actuator has been designed, built and tested
in the laboratory. Anintermediate version of the design was presented at the
Workshop on Aerospace Applications of Magnetic Suspension Technology at NASA
Langley in September, 1990 [27]. The final design described here incorporates many
of the same features, but is much more linear with coil position. This was
accomplished through modification of the flux distribution.

A schematic of the typical Lorentz Actuator, along with the terminology
used, is shown in Figure 5. The current carrying coil moves in and out along the
core. A strong permanent magnet in the shell maintains a constant magnetic flux in
the cylindrical air gap across the pole faces, irrespective of the current in the cojl
(within design limits). The Lorentz force generated, therefore. can be linearly
varied with coil current [28].

The requirements for the laboratory prototype were fixed at a total stroke of
two inches and enough force capability to isolate a mass of 75 Ibs. connected by an
umbilical (air dashpot) to a source generating very low frequency vibrations. Force
linearity with position and with current were also required. Moreover, in view of
the ultimate goal of deployment in space, such a device had to be compact and
lightweight. Low power consumption and low heat generation during operation
were also important.

A computer program was written to implement a simple design algorithm for
a Lorentz Actuator. The steps of this algorithm are presented in Figure 6.

Using a permanent magnet material with a very high maximum energy
product of 35 MGOe (mega—Gauss—Oersted) [29] resulted in a design that required
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a ring magnet of 3.20 in. outer diameter. The magnet manufacturer, however, could
make such a magnet in one piece only if its outer diameter were less than 2 in.:
making a ring magnet with a 3.20 in. outer diameter would have required the costly
assembly of multiple segments, with an escalation of costs.

The possibility of designing a Lorentz Actuator satisfying all the
requirements, with the outer diameter of the magnet being additionally constrained
to less than 2 in., was therefore explored. The significant parameter in this context
is the gap ratio, defined as the ratio of the shell—to—core air gap to the

le—face—to—core air gap. Conventional designs use ratios of 5:1 or higher in order
to minimize leakage of magnetic flux from the shell to the core. Figures produced
by the design program suggested that the design requirements could be met, along
with the additional constraint, if the rule of thumb of using a gap ratio of 5:1 or
more were drastically violated. Apparently, flux leakage, which the computer
program did not take into account, would result in the failure of such a design. It
was then hypothesized that this would not necessarily be the case if the core of the
actuator were saturated during normal operation. The permeability of a saturated
ferromagnetic material approaches that of air, and so most of the leakage that
would have occurred, with such a low gap ratio (less than 2:1) and an unsaturated
core, would be prevented.

A good way of verifying this hyvpothesis, without actually building such an
actuator, is the use of finite element analysis. A commercially available magnetic
finite element analysis package, \{AGGIE, with a nonlinear modeling capability,
was chosen. It also allowed us to take leakage and fringing into account, and
different materials and geometries could be "tested" with relative ease.

A number of designs incorporating various features, were analyzed using the
finite element analysis package. The finite element model was generated so as to
achieve as much accuracy as possible, within hardware limitations. The mesh
consists predominantly of quad elements. Infinite air elements, used earlier, were
found to cause severe restrictions on mesh fineness. A mesh with only about
100 elements could be used. An air thickness of an inch on three sides of the
axisymmetric model was specified instead. This was determined to be as accurate
as having infinite air elements on all three sides for a model of this size, while a
relatively fine mesh with about 400 elements could be used without encountering
core memory limitations. Moreover, the finest mesh allowed by the configuration of
our 386—hased personal computer was used for the analysis.

Position linearity was improved, relative to the intermediate design, by
increasing the length of the magnet, imparting a lip to it by reducing the shell outer
diameter. and reducing the core diameter. The gap ratio resulting from the last
chanee mentioned above is still only 1 47:1 — much smaller than a typically
Speci%ed value of 5:1. The use of such an unconventionally low gap ratio enabled
the design of a compact and lightweight actuator. Use of a large ratio would also
have required a large diameter magnet that could not be made in one piece, thus
increasing costs. The decrease in flux, and therefore force. caused by the increase in
the length of the magnet was compensated, to some extent, by a reduction in the
‘uner diameter of the magnet and a doubling of the pole piece thickness. Figure 7
shows the design. The overall length of the actuator is 4 in., while the outer
diameter is only 1.95 in..



The salient features of the final design of the compact Lorentz Actuator are
described below:

e Long Stroke — The requirement of two inches of total stroke is satisfied.

e Position Linearity — Over the whole two inches of stroke, the actuator exhibits a
high degree of linearity. For a constant coil current, this means that the actuator
force is the same irrespective of the axial position of the coil, within the stroke
bounds. Figures 8 and 9 depict this relationship for positive and negative coil
currents respectively. Note that flux leakage has been reduced to almost zero over
the shell-to—core gap to achieve this. The maximum flux density across the
shell-to—core gap is only about 7% of the maximum flux density across the
pole—face gap.

e Current Linearity — This requires that the average flux density in the effective
air gap remain constant with variations in the coil current between the upper and
the lower limits. This is indeed the case. resulting in force vs. current linearity,
Figure 10.

e Force — A maximum force of 1.25 lbs is produced by this actuator. which is
sufficient for our needs. This peak force requires a coil current of 2.5 A.

e Weight — At 2.28 Ib., this actuator is only a tenth of a pound heavier than the
previous design.

e Current Density — A value of 1000 A/sq. in. in continuous use ensures cool
operation. For peak loads, a fivefold increase in current density is possible.

o Materials — The magnet is made of neodymium iron horon. which has a very
high maximum energy density product of 35 MGOe. Selection of such a material
helped make the design compact. The high permeability circuit material is a 43%
nickel—iron alloy that saturates at 15 kG. The B—H curve for this material,
provided by the manufacturer, was input to MAGGIE as a table of a large number
of points on the curve. This was necessary because a nonlinear material
characteristic was being modeled.-

The design specifications of the Lorentz Actuator are detailed in Table 2.
This actuator was built and tested in our laboratory. Figure 11 compares the
measured magnetic flux density in the radial direction along the shell-to—core and
pole—face—to—core gaps with the values predicted by finite element analysis, for no
current in the coil. The measured peak value is lower, but is spread over a wider
axial distance. There is good agreement. especially over most of the shell-to—core
gap, where near—zero values of flux density are crucial to achieve force versus
position linearity. The actual actuator force is plotted against position for a number
of values of coil current in Figure 12. The measured values of force are greater. in
each case, than the predicted values since most of the small amount of leakage flux
across the shell-to—core gap was neglected in calculating the predicted forces.
Moreover, since the coil does see slightly greater total flux as it moves into the
actuator, because of the small amounts of leakage, the forces measured increase
somewhat with such motion. However, for low values of current and for coil
positions that do not place it very near the closed end of the actuator. the actual
forces deviate by less than 10% from the predicted values.
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5. CONCLUSION

The rig designed to demonstrate vibration isolation to microgravity levels in
one—dimension has been built and assembled. Measurements of the background
acceleration levels have also been made. and the quietest period for operation has
been determined. A compact, long stroke Lorentz actuator has also been designed,
built, and tested. Its performance has been shown to match that predicted by finite
element analysis very well. Microgravity isolation experiments will be conducted in

the very near future.
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LORENTZ ACTUATOR : FINAL DESIGN

Total length

Magnet outer diameter
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Pole-piece thickness
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Air gap
Shell-to-core gap
Gap ratio

Coil length

Coil wire diameter
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Maximum coil current

Air gap flux density
Max. force generated
Actuator wt. (no coil)
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Lorentz Actuator
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Fig. 5: Schematic of a Lorentz Actuator
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LORENTZ ACTUATOR : DESIGN EQUATIONS

1. Assume permanent magnet operating point for maximum
energy product : (-H1, B1).

2. Compute magnet flux, fm = B1 » Am.

3. Compute circuit flux, fc = H1 » Lm / R, where R is
the circuit reluctance.

4., Compare fm and fc.

5. Adjust operating point until fm = fc = f, the actual
operating point. (When saturated, f = saturation
flux in saturated segment of circuit.)

6. Calculate air gap flux density, Bg = f / Ag.

7. Compute force capability, F = i « | « Bg, where i is
the actuator current and | is the total length of
coil wire in the air gap.

8. Change actuator geometry or circuit / magnet
material until desired force level is achieved. ‘

l
Fig. 6: A Simple Algorithm for Designing a Lorentz Actuator

Fig. 7: The Compact, Long-Stroke Lorentz Actuator
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CONTROL ISSUES OF MICROGRAVITY VIBRATION
ISOLATION
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Abstract—Active vibration isolation systems contemplated for microgravity space experiments may be
designed to reach given performance requirements in a variety of ways. An analogy to passive isolation
systems proves to be illustrative but lacks the flexibility as a design tool of a control systems approach
and may lead to poor designs. For example, it is shown that a focus on equivalent stiffness in isolation
system design leads to a controller that sacrifices robustness for performance. Control theory as applied
to vibration isolation is reviewed and passive analogies are discussed. The loop shaping trade-off is
introduced and used to design a single degree of freedom feedback controller. An algebraic control design
methodology is contrasted to loop shaping and critiqued. Multi-axis vibration isolation and the problems
of decoupled single loop control are introduced through a two degree of freedom example problem. It
is shown that center of mass uncertainty may result in instability when decoupled single loop control is
used. This results from the ill conditioned nature of the feedback control design. The use of the Linear
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Quadratic Regulator synthesis procedure for vibration isolation controller design is discussed.

1. INTRODUCTION

Active vibration isolation for microgravity space
experiments has generated much interest lately. A
variety of disturbances on-board manned space
orbiters contaminates the desired microgravity en-
vironment. These accelerations cover a frequency
band from d.c. to 100 Hz. Low frequency (<1072 Hz)
sources include drag, solar pressure oscillations, tidal
effects, and gravity gradient forces. At the higher
frequencies, manned activity, thruster firing, and
orbiter systems contribute most significantly. A com-
prehensive treatment of the orbiter accleration en-
vironment is presented in 1] from which Fig. 1, a
characterization of the environment, is taken.

The need for the active isolation of materials
processing and fluid science experiments in the fre-
quency range 0.01-10 Hz has been demonstrated by
Jones et al. [1-3]. Above this range passive isolation
systems could be used. Below 0.01 Hz the rattlespace
available for the experiment is not large enough to
accommodate the relative motion. Therefore, these
accelerations must be passed by the isolation system
to the experiment.

Active isolation systems for microgravity and
pointing applications have been designed and con-
structed by many investigators [3-5]. These systems
generally use conventional PID control of a non-
contacting actuator, either Lorentz or electromag-
netic, to achieve low frequency disturbance attentua-
tion. While an actual microgravity experiment may
require umbilicals for cooling and power (at this
point, it is not clear whether these functions can be
performed otherwise as described in [4]) the isolation
systems designed and tested so far preclude an umbil-
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ical from consideration. These systems achieve their
performance by the very low stiffness made possible
by low gain feedback of the relative position of the
experiment to the mounting surface. Without an
umbilical this stiffness may be set by the designer at
will. However, when an umbilical is present, the
umbilical stifflness presents a lower bound on achiev-
able stiffness unless the feedback loop is used to
introduce a negative stiffness. In this paper, the issues
of control system design for the generic (i.e. with
umbilical) microgravity experiment will be con-
sidered. i
Previous research in the area of active microgravity
vibration isolation has established the importance of
the umbilical in control system design. Jones et al. [6]
present a good preliminary examination of the single-
degree-of-freedom control issues for intrusive and
non-intrusive isolation systems. Grodsinsky [7}
examined the use of acceleration and velocity feed-
back. Many of the issues these researchers have
discussed are revisited here from a control theory
perspective. Analysis of the six-degree-of-freedom
problem in the literature has been restricted to one-
loop-at-a-time design. Generally the effects of cross
coupling between the various degrees of freedom
have been ignored. Owens and Jones [2] have investi-
gated the effect of cross coupling due to center of
mass displacement for a single loop based controller.
Their work examines this important problem for the
non-intrusive experiment platform case where rela-
tive position feedback is sufficient. The authors con-
cluded that satisfactory performance can be achieved
if the control loops are designed for the decoupled
degrees of freedom and not autonomously for each

PREGEDING PAGE BLANX NOT FILMED
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local position. It should be noted that high gains are
not required to achieve isolation for the umbilical-
free case. An example is presented in this paper which
shows that decoupled single loop design may not be
sufficient for the generic isolation problem.

Any microgravity isolation system design should
meet the following specifications for translational
axes:

(1) Unity transmissibility from d.c. to 0.001 Hz so
as to prevent the experiment from impacting its
enclosure’s walls.

(2) At least 40dB attenuation above 0.1 Hz 13}

(3) Both stability and performance robustness
with respect o changes in umbilical/experiment prop-
erties, non-collocation or misalignment of sensors
and actuators, center of mass uncertainties, and
unmodeled cross coupling between the degrees of
freedom. '

Robustness refers to the ability of the control
system to perform satisfactorily when the true plant
varies from the nominal plant. Performance require-
ments of the type (2) for rotational degrees of free-
dom have not yet been specified to the knowledge of
the authors.

In this papur we shall examine the control system
issues associated with active microgravity vibration
isolation. The purpose here is not to develop new
control theory but to apply existing concepts to the
problem. We hope that this paper will serve a tutorial
function for vibration engineers involved with the
microgravity problem. The thesis of this paper is that
control system design, not passive isolator design
familiar to vibration engineers, is the proper tool for
analysis and synthesis. First, the control theory re-
quired for the examination is reviewed in Section 2,
Section 3 reviews passive isolation and applies it as an
analogy to control system design. In Section 4 classi-

t The Nomenclature is given in the Appendix at the end of
this paper.

cal loop shaping is applied to the isolation problem
and a controller is designed. A discussion of the result
and a passive system analogy follow. An example
multi-degree-of-freedom system is explored in Section
5 and system robustness is examined. Section 6
concludes with an examination of the Linear
Quadratic Regulator for the isolation problem.

2. CONTROL THEORY PRELIMINARIESt

We examine here the prerequisite control theory
for the examination to follow. While the actual
isolation problem is multi-dimensional, a single-
degree-of-frcedom example will be examined first.

The one-degree-of-freedom microgravity vibration
isolation problem, depicted in Fig. 2, consists of an
experiment of mass m connected by an umbilical and
an actuator to a wall of the experiment enclosure. The
umbilical is modeled here as a linear element with
stiffness k& and damping ¢. The wall's motion (dis-
placement y} is transferred through the umbilical to
the experiment resulting in its motion (displacement
x). Direct disturbances may also act on the exper-
iment due to the experiment’s processes (e.g. motors,
valves, shutters). While it may seem that there is no
need to distinguish between umbilical and direct
disturbances, they are indeed different. The distinc-
tion lies in the fact that the actuator influences
through the experiment's motion the force transmit-
ted through the umbilical; direct disturbance forces,
however, are independent of actuator force. This
distinction carries through to both passive isolator
performance and control system design.

The equation of motion for the experiment is

mi+cxX +kx=cy+ky+d+f (1)

where d is the direct disturbance force and /S is the
actuator force. We assume here that the spacecraft
wall is of sufficient impedance so as to not be affected

EXPERIMENT ENCLOSURE

EXPERIMENT
| ———]

UMBILICAL ACTUATCR
2 Y

]

Fig. 2. The one-degree-of-freedom microgravity vibration
isolation problem.
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by the actuator force. Under Laplace transformation
eqn (1) yields

cs + k
X“’{m]”"

|

or

, cs + k
Xs)= {m]” (s)

SZ
+ [m]{l)(s) + F(s)]. (2b)

This is illustrated in the block diagrams for the
isolation system (Fig. 3(a) and (b)). Here, H(s) is the
feedback transfer function, T(s) is the feedforward
transfer function, and ¢, (s), v,(s) are measurement
noises. The actuator force is therefore a linear func-
tion of the wall and the experiment motion. The
subscripts p and a throughout this paper refer to
whether the model used is in position or acceleration
form.

If the umbilical properties are known explicitly and
measurement noise s sufficiently small, then trans-
mitted disturbances can be rejected with only feedfor-
ward control. Note, however, that direct disturbances
can only be attenuated through feedback. As always,
the primary purpose of feedback here is to account
for uncertainties, either in the disturbance or in the
plant model.

The price paid for this property of feedback is the
requirement that the feedback be stabilizing over the
range of uncertainties in the nominal plant, the plant
model assumed for design. The nominal stability of
the closed loop system may be checked by a variety
of methods, the most popular for single-input-single-
output (SISO) systems being the Nyquist and Bode

| !
: O

Fig. 4. Unity feedback form of control system.

plots. Implicit in these methods are measures of
system robustness. The Nyquist stability criterion can
be generalized to multi-input-multi-output (MIMO)
systems, however the robustness measures do not
carry over as straightforwardly.

Both Fig. 3(a) and (b) can be generically expressed
in the form of Fig. 4 where G(s) is the plant, P(s) is
umbilical’s pre-compensation of the wall disturbance
and D(s) is the equivalent disturbance to the system.
Figure 4 has been presented in unity feedback form
so as to introduce the concept of loop shaping and the
trade-offs inherent in control system design. Denote
the transfer functions between D(s) and X(s), the
sensitivity function, as

X(s) 1

SO =55 =T7ca

3

and between v,(s) and x(s), the complementary sensi-
tivity function, as

_Xs)  GH
C(-‘)=m—‘-‘—‘l+GH- 4

(b)

; cs + k O 52 ’(

s?

F Yo

Fig. 3. Displacement (a) and acceleration (b) isolation system block diagrams.
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Note that S(s)+ C(s) = 1. Therefore, a feedback
controller designed to attenuate external disturbances
at a particular frequency

IS(jwo)l € 1.0 |GH(jw,) > 1.0

cannot attenuate the measurement noise signal at that
frequency
[CUwy )l = 1.0.

Likewise, a controller designed to reject a certain
frequency measurement noise, IC(jewo)| < 1.0, must
pass the external disturbance at this frequency,
[S(jwe) =~ 1.0. Classical design of control systems
usually involves separating (if possible) the frequency
spectrum into regions where input disturbances
(measurement noise here) and output disturbances
(external disturbance here) predominate. The meth-
odology, known as loop shaping, consists of choosing
H(s) so that GH is large and therefore S(s) is small
at frequencies where output disturbances are domi-
nant, and choosing H(s) so that GH is small and
therefore C(s) is small at frequencies where input
disturbances are dominant. This would be a relatively
simple task if the designer only needed to be con-
cerned with the magnitude of GH. However, stability
of the feedback system requires that the argument of
GH at crossover, where IGH (jw,)l =1.0, be
> —180°. That is, the system must have some phase
margin. Since the phase of a transfer function is tied
to the derivative of its magnitude (in dB) with respect
to frequency, as was shown by Bode (8], the loop
shaping’s results are fundamentally limited by the
difference in frequency between the input and output
disturbances. The designer may only change through
shaping H(s) the magnitude in dB of GH at so fast
a rate. Thus, the frequency bands where the magni-
tude of the sensitivity function and complimentary
sensitivity function may be small must be separated
in frequency by a crossover region of a certain width.
This width is dependent on G(s) as well as on how
small |C(s)] and [S(s)] must be.

The trade-off between rejection of input and output
disturbances through feedback is also inherent in
passive isolation systems. Suppose we are capable of
choosing the umbilical stiffness and damping of Fig. 2
S0 as to design a passive isolator. Note that the
transfer function relations

X(s)  Gs) Xs) 1
¥6) T+60) D(s)im 1+ G(s)

apply where
k
Gis)= (“ i )
ms

From this, it is easy to sce that direct disturbances act
as output disturbances while wall accelerations act as
input disturbances. The difference between designing
an isolation mount for base disturbances and for
direct disturbances is well known and understood by
vibration engineers. A soft mount is appropriate for

(3

isolating against base disturbances while a stiff mount
is appropriate for direct disturbances excitation. The
loop shaping capability of springs and dampers is,
however, very restricted. Indeed, one cannot shape
the loop to yield an unstable system. An active
control system may have its loop shaped to an
arbitrary specification provided it is possible to meet
the specification without sacrificing system stability.
Here lies the chief advantage of designing an isolation
system from a control paradigm: the interaction of
the conflicting specifications, stability and robustness,
is clear throughout the loop shaping procedure. It
should be noted here that sensitivity and complimen-
tary sensitivity functions are extendable to MIMO
systems through the use of singular values.

Robustness in single-input—single-output con-
troller design is measured by gain and phase margins.
The gain margin is the range of gain that can be
introduced into the loop while maintaining stability.
Similarly, the phase margin is the amount of phase
that can be introduced into the loop while maintain-
ing stability. The practical importance of the margins
is that the gain and phase of the nominal plant is not
the same as that of actual plant. These margins may
be easily determined from Nyquist or Bode plots.
Loop shaping also implies that a compensator H(s)
should not be so large as to extend the crossover
frequency of the compensated system into the higher
frequency range where nominal models are very
inaccurate,

Robustness for MIMO systems can also be
specified in terms of the simultaneous gain and phase
variations that may be introduced into the loops
while preserving stability. However, this description
does not account for unmodeled coupling in the
dynamics. Uncertainty may be represented in terms
of an additive (in parallel) or multiplicative (in series)
transfer function matrix appended to the plant.
(While these are the most common there are other
representations.) Using either uncertainty represen-
tation it can be easily shown by the small gain
theorem that stability can be guaranteed if uncertain-
ties in the plant are required to be bounded by a norm
of the compensated plant. This is best represented in
terms of the frequency dependent singular values of
the plant and uncertainty transfer function matrices.
This measure, however, is conservative since it allows
cross coupling dynamics between channels that in
actuality could never occur. The structured singular
value methodology attempts to alleviate this conser-
vatism through structuring the uncertainty model.
Readers interested in a general trea'ment of MIMO
stability and robustness should consult Ref. [9].

3. PASSIVE ISOLATION: AN ANALOGY

We now examine the design of an active vibration
isolation system for microgravity space experiments
from an analogy to passive isolators. Indeed, the
primary reason for pursuing an active rather than a
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Fig. 5. Specifications (1) and (2) and uncompensated trans-
missibility X(s)/ ¥(s).

passive system is not the increased flexibility in loop
shaping but the limitations of passive systems in
attaining a stiffness low enough to meet the isolation
requirements. This is true even when no umbilical is
present.

For the generic system model of eqn (1) with the
nominal values m =220kg, k =20N/m and
¢ =6.63 N-s/m (5% of critical damping). The trans-
missibility curve between base and experiment accel-
eration, shown in Fig. S, is given by

X(s) _ Aw,s + o ©)
(s) s'+2w,s + ol
with

w, =./k/m =0.3rad/s =0.048 Hz

{ = /c}amk = 0.05.

Also depicted in Fig. S are the transmissibility
specifications (1) and (2) discussed in Section 1.
While the system satisfies the unity transmissiblity
criterion, note that the natural frequency is not low
enough to meet the 40 dB attenuation requirement.
The system is also deficient in the magnification of
disturbances at and near the resonance. Clearly any
modification to the umbilical’'s dynamics through
feedback should include increased damping through
a positive gain on experiment velocity. Feedback of
inertial experiment velocity permits the damping co-
efficient { to be increased in the denominator of
eqn (6) without changing it in the numerator.
Thus, the resonance can be removed without affecting
the roll-off rate [since the zero of eqn (6) is not
changed].

If the umbilical were softer, say with & = 0.20 N/m,
both specifications (1) and (2) could be met by the
passive system. Unfortunately, a passive system
cannot lower the stiffness with its inherently positive
gains on position feedback. An active system, though,
permits insertion of a negative stiffness spring in
parallel with the umbilical. For example, for the
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nominal plant with the controller transfer functions
of Fig. 3(a) equal to

H,(s)= —(6.0s + 19.8)
T,(s)= —(6.0s + 19.8) @)

the natural frequency of the system is moved an
order of magnitude lower. (Here, a negative damper
has also been introduced so as to maintain the
system’s 5% critical damping for the purpose of
comparison. If less negative damping is introduced in
order to remove the resonance, even more negative
stiffness must be introduced to meet the 40 dB specifi-
cation.) Note that this vibration engineering ap-
proach, i.e. lowering the stiffness, requires the near
cancellation of the umbilical's stiffness with that
introduced via feedback. If the negative stiffness
exceeds that of the umbilical, the equivalent stiffness
of the system will be negative and the system will be
unstable. It is not surprising then that the introduc-
tion of negative stiffness via the controller has no
robustness whatsoever. The design using eqn (7) has
<0.1° phase margin. The root locus for the system,
shown in Fig. 6, clearly indicates this potential for
instability. A focus on equivalent stiffness in isolation
system design thus leads to control systems which
sacrifice robustness for performance. In addition, a
design which achieves isolation through lowering the
system stiffness cannot attenuate direct disturbances
over the same frequency band, as discussed in
Section 2.

From a vibration engineering viewpoint, an
alternative means of achieving rejection of disturb-
ances is to fasten the experiment rigidly to an inertial
structure. While there is no such structure in space,
it is possible to achieve this effect by a high positive
gain feedback on inertial experiment position. (The
inertial position must be obtained by integrating an
accelerometer reading twice. This does pose a prob-
lem since this procedure is marginally stable. How-
ever, this problem may be ameliorated through
replacing the integrators with a second order low pass
filter. The authors are aware of this method being
employed successfully on a six-degree-of-freedom
magnetic suspension isolation rig at NASA Lewis
Research Center.) This inertial position feedback acts
as a very stiff spring tying the experiment to inertial
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o
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Fig. 6. Root locus for equivalent stiffness design with

respect to umbsilical stiffness error.
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space. A controller and resulting transfer functions in
this case are

Hy(s)=2000 T,(s)=0

X(s) _ 6.63s + 20
Y(s) ™ 22057+ 6.635 + 2020
X@s) 220s?

D(s)/m 22057+ 6.63s + 2020 ®
While this controller meets the 40 dB specification, it
does not have unity transmissibility below 0.001 Hz.
An experiment controlled in this fashion will collide
into the wall. The feedforward transfer function may
be adjusted to provide unit gain via

—2000

L) =571

This feedforward with the feedback term of eqn (8)
effectively acts to base disturbances as a high relative
stiffiness up to 0.001 Hz changing to a large inertial
stiffness at higher frequencies. The resulting trans-
missibility X(S)/ ¥(s) is presented in Fig. 7. Note that
since the feedback loop introduces no damping, the
original resonance is still present although less
damped and at a higher frequency. This may be
corrected by adding inertial damping into the feed-
back loop. While this design method may be used to
meet the specifications with robustness it has three
faults: (1) it requires inertial experiment position,
inertial wall position, and inertial experiment velocity
measurements which are problematic to obtain, )it
requires very high gains in both feedforward and
feedback loops to obtain attenuation, and (3) an
extension of the method to multi-degree-of-freedom
systems would be difficult. It is also possible that
when a flexible wall is considered, rather than the
infinite impedance structure assumed, the system will
be unstable.

As another method of fastening the experiment to
inertial space, one may employ inertial damping via
feedback. By feeding back the inertial experiment
velocity with a high gain, it is almost possible to
achieve both the 40dB and unity transmissibility
specifications without resorting to feedforward. For
example, with

Hy(s)=1000s T,(s)=0

Magnitude
3
~N

1079 1073 102 4o 00 ot 102
Frequency (Hz)

Fig. 7. Transmissibility X(s)/ ¥(s) for inertial stiffness with
feedforward design.
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Fig. 8. Transmissibility X(s)/P(s) for inertial damping
design.

the resultant transmissibility is shown in Fig. 8,
Unfortunately, the roll-off rate here is approx.
20 dB/decade and therefore it is impossible to achieve
both specifications simultaneously. This method has
the advantage over the inertial spring of being a great
deal simpler and requiring only one inertial measure-
ment (experiment velocity which requires only one
integration of accelerometer measurements).

Another passive analogy is the lowering of the
natural frequency of the umbilical by increasing the
experiment mass. An increased experiment mass
would attenuate direct disturbances as well as those
transmitted through the umbilical. In addition, at
frequencies below the natural frequency of the
umbilical, the isolation system would have unity
transmissibility. Of course, for space applications any
additional mass is very costly. To lower the natural
frequency by an order of magnitude would require
increasing the experiment mass by a factor of one
hundred. Clearly, it is not practical to accomplish
increased isolation through the addition of real mass.
However, it is possible to increase the effective mass
of the system through feedback. This will be exam-
ined in the next section, as this idea most properly
evolves out of loop shaping.

To summarize, the passive isolation analogy to
active control system design yields some insight but
falls short as a design tool on three counts: (1) it does
not have the flexibility to shape the response with its
simple analogical elements, stiffness, damping, and
mass, so as to achieve the performance requirements,
(2) it cannot be easily or effectively generalized to
multi-degree-of-freedom problems, and (3) it com-
pletely ignores the robustness problem inherent to
active control systems. We advocate, therefore, that
vibration engineers consider active isolation a con-
trols problem and address it from an automatic
controls perspective.

4. THE CONTROL SYSTEM APPROACH

A simple controller is now designed for the system
described by eqn (1) and the nominal values. The
authors refer the reader again to Fig. 5 where the
transmissibility curve between experiment and wall
accelerations (or positions) is presented along with
the design specificaticns (1) and (2). The goal is 10
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design a feedback control H,(s) that results in the
closed loop transfer function

_ &ﬂ _ G (5)P(s)
)=y =TT G,($)H, (5) @

satisfying both constraints; i.e.

[Ga(jwo)l ~ 1.0 2%’ <0.001 Hz

G (jewo)| < 0.01 ;’—; >0.1 Hz.

Here, G,(s) and P(s) are as indicated in the block
diagram of the system [Fig. 3(a)]. Note that the
uncontrolled system G (s)P(s) already satisfies the
first of these constraints; therefore, H,(s) should be
very small in the low frequency band so that the
closed loop system will continue to satisfy the unit
transmissibility specification. Consequently, this
specification yields a condition like

IGH, (jw,)| < 0.01} w,

IH, (joo)] < 0.2 I <0.001 Hz .

At and above 0.] Hz, the attenuation of the uncon-
trolled system is not sufficient. It is desirable to
increase the attenuation by approximately two orders
of magnitude. This may be accomplished by requiring
H,(s) to be very large in this frequency range,
approximately

IGH, (jeoo)] > 100] ey
|H, (jeoy)| > 2000 { 2 > 01 Hz.
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Fig. 10. Resultant transmissibility for loop shaped design.
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These two design specifications on H,(s) are shown
in Fig. 9 along with a simple function satisfying these
conditions,

H,(s) = 500052, (10)
This controller design results in the closed loop
transmissibility between experiment and wall acceler-
ations which is plotted in Fig. 10. Note that both
specifications (1) and (2) are met. Inertial damping
should be added to this design to eliminate the
resonance. It is easily seen from a root Jocus plot that
this design is robust with respect to changes in
umbilical/experiment properties (Fig. 11) and
actuator finite bandwidth (Fig. 12). In practice, this
design would be improved by rolling off the controller
gain. This limits the controller bandwidth so as to not
affect possible unmodeled lightly-damped high fre-
quency modes of the system (e.g. wall flexure). A
controller design would probably also include a weak
position integral feedback to provide a slow centering
force so that accelerometer bias and noise do not
result in wall collision.

The reader might object to the controller of eqn
(10) since it is improper (i.e. has more zeros than
poles). However, this controller is realizable. Note
that H,(s) multiplies the position measurement to
yield the control force. Since the factor s? in the time
domain is equivalent to two differentations with
respect to time, eqn (10) prescribes constant gain
acceleration feedback. This, as discussed earlier, in-
creases the effective mass of the system. [Of course, if
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© o -.
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1 L i i
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Fig. 12. Root locus of loop shaped design with respect to
actuator finite bandwidth, @, = actuator pole break fre-
quency.
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we modify eqn (10) to limit the controller band-
width, then the mass analogy only holds within the
band.]

While both transmitted and direct disturbances are
attenuated, the experiment acceleration level will be
approximately the same as the accelerometer
measurement noise level. This results from the trans-
missibility between experiment acceleration and
measurement noise being nearly one due to the high
gain feedback. This is a fundamental issue as dis-
cussed in Section 2; one must trade-off the rejection
of disturbances to the system and the rejection of
measurement noise. Since the disturbances may be up
to 1000 times larger than the measurement noise
(accelerometer resolution typically 1pug) the con-
troller is designed to reject disturbances. The per-
formance of the control system is thus directly a
function of the quality of the accelerometer.

Recently, an alternative approach to design of
active vibration isolation control systems for micro-
gravity experiments was presented in Ref. [10]. A
desired transmissibility ratio G, (s) is specified along
with the plant model G,(s) and P(s). Equation (9) is
then solved via algebraic manipulation for the feed-
back controller H,(s) that yields the desired trans-
missibility (feedback of relative position is also
allowed and may be used; if used, a second condition
must then be specified for solution). While this ap-
proach resembles loop shaping in that it attempts to
achieve a certain transmissibility, it is fundamentally
different in that it does not properly consider the
plant. The algebraic procedure in essence first elimin-
ates the plant and then replaces it with one which will
yield the desired transmissibility. As a control design
procedure, this methodology has serious flaws: (1) the
stability of the resulting system may be entirely
dependent on perfect knowledge of the plant, (2) the
procedure incorporates none of the known relation-
ships and fundamental trade-offs between stability
and attenuation; it implies that any specified trans-
missibility is achievable, and (3) for systems with
right half plane poles/zeros, the methodology may
attempt cancellation with right half plane zeros/poles.
For a simple controls problem, the algebraic manipu-
lation method may result in a good controller.
However, for more difficult problems, the method
is questionable. An extension of this methodology
to MIMO control would be plagued by many
problems.

To summarize, controller design for single-degree-
of-freedom vibration isolation problems is best per-
formed through the classical control framework of
loop shaping where the natural interplay between
performance, stability and robustness are evident.
For multiple degree of freedom isolation problems,
recent advances in controller design, such as the
extension of loop shaping principles via frequency
weighting and singular values [11] scems to be most
promising. In order to emphasize the question of
coordination in control of MIMO systems, we next
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examine a multiple degree of freedom isolation
problem.

5. A MULTIPLE-DEGREE-OF-FREEDOM SYSTEM

A common misunderstanding among many engin-
eers unfamiliar with control system design is the
nature of the differences between SISO and MIMO
control problems. The relative ease with which the
uninitiated comprehend the elimination of one error
signal through negative error feedback yields the false
impression that the MIMO control problem is little
more than the feeding back of multiple error signals.
This impression, however, is not totally groundless.
Indeed, many MIMO controllers in use today were
designed by a single-loop-at-a-time procedure,
Design with this method can be quite difficult, time
consuming, and non-intuitive. Robustness is difficult
to check except by analyzing all the possible permu-
tations to the nominal plant. The fundamental
problem in MIMO design is the coordination of the
control in coupled channels when the plant is not well
known (poorly modeled or time varying).

Easily decoupled active vibration isolation control
problems may be deceptively simple. Unmodeled
cross-coupling due to inaccuracies in center of mass,
sensor, and/or umbilical locations can result in poor
performance and even instability. An example iso-
lation problem illustrates. Figure 13 shows a two-
degree-of-freedom isolation system composed of an
isolated platform (width 0.5m and height 0.2 m,
depth unspecified), two accelerometers, two actua-
tors, an umbilical, and a translating base. The plat-
form may translate vertically or rotate about its
center of mass. The actuators and accelerometers are
positioned a distance of ¢ =0.2m symmetrically
about the assumed center of mass location. An
umbilical of stiffness & (no damping) runs between
this location and the base. The platform has mass m
and inertia /. The equations of motion for the
platform’s translation x(r) and rotation 0(r) are

mi + kA0 +kx =f, + f; + d,

H+kA0 +kAx=(qg + AV, — (g =AY, +d, (11)

¢ Assumed Center of Mass
Q@ Center of Mass
a Acceleromaeter

Fig. 13. Two-degree-of-freedom active isolation system,
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where d, and d, are the disturbances, and A is the
error in the assumed center of mass. The accelerom-
eter readings are

n=i-(q-a¥

yv2=%+(q +A). (12)

The nominal system (A=0) can be decoupled in
terms of the degrees of freedom by the change in
variables

F=f+/

M=q02-1)

71=( + )2

=9 — )2 (13)

which are nominally the translational force, the
moment, the translational acceleration, and the angu-
lar acceleration for the platform, respectively. The
nominal transfer functions for the system are then

52
Z,(s) =[ms’ +k](l’(S) + Dy (s))

1
Zy(s)= ,:7.:,(1‘4(5) + D;(s)).

For translational motion, the natural frequency of
the platform is \/k /m. The rotational motion of the
platform is free since the umbilical is attached to the
center of mass. To compensate the nominal system,
feedback can be designed for each mode of the system
separately, since the system is decoupled. Transla-
tional acceleration and velocity feedback are first
used to add effective mass and damping.
¢

F(s)= —<a +;)2, (s). (14)
This lowers the natural frequency of translational
motion yielding the closed loop transfer function

52
2165 = [(m +a)st+es + k:,D'(s) '

Next, angular deflection feedback is used to constrain
low frequency rotational motion and some damping
is provided.

M(s)= —(f + %)22(5)
5 5

(15)
yielding

2
Zy(s) =[ d ]D;(s)

Is*+ns+ b

The following values are used to illustrate this
example

Platform Control system

m =400 kg a = 31600 kg
k =50N/m ¢=1000N - s/m
I=10kg m? b=0015N"-m
n=02N-m-s

where the control system values are in effective units.
This control design lowers the natural frequency of
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translational motion from 0.056 to 0.006 Hz with
40% of critical damping. The controlled rotational
motion has a natural frequency of 0.006 Hz with 26%
of critical damping. This controller design would
yield very effective isolation on the nominal system.

The actual close loop transfer functions, however,
will be different from the nominal due to the error in
the center of mass, A. The transmissibility can be
derived from eqns (11)H15) as follows

[ms? + k]X(s) + [kA)O (5) = F(s)+ D,(s)
s+ kAO(s) + (K AIX(s) = M(s) + AF(s) + D, (s)
Z,(5) = [s’1X(5) + [As7O (s)
Z,(s) =[50 (s)
F(s)= —[a + ¢/5)Z,(s5)
M(s)= —[n/s + b/s7Z,(s)

yielding
2
[MJZ (s) +[mA)Z;(s) = D, (s)
2 2
[(*\*m]z <s>+[’“;+“’]zz<s)= Dy(s)

The poles of this system are given by the roots of the
characteristic equation

[(m + a)s® + cs + k][Is? + ns + b]
—[mA][A(as’ + es + k)] =0 (16)

For the nominal plant, A = 0, the roots of eqn (16)
result in the prescribed natural frequencies and criti-
cal dampings. However, as the center of mass error
increases, the poles migrate and the system becomes
unstable. For an error as small as 6 mm, instability
occurs. A plot of the pole movement vs error in
center of mass is shown in Fig. 14. This sensitivity
results from the ill-conditioned character of the re-
quired controller. Ill-conditioned here means that the
controller’s gain to an output signal varies strongly
with the signal’s direction. This results in a control
system which is not robust to this model’s uncertainty
(center of mass)[12). A proper MIMO controller
design might remedy this problem. In any case, an
analysis of the problem from a MIMO control
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Fig. 14. Root locus of two-degree-of-freedom with respect

to center of mass error A.
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perspective would indicate the potential instability
and the nature of the trade-off between performance
and robustness. (The authors note that increasing the
damping and stiffness for the rotational mode
improves the system robustness significantly, while
changing the damping or effective mass for the
translational mode has little effect.)

6. LINEAR QUADRATIC REGULATOR FOR ISOLATION

MIMO control design, since it requires a high
degree of coordination, must proceed by a synthesis
procedure. One such method is Linear Quadratic
Regulator (LQR) synthesis [13]. This produces a state
feedback controller which is optimal with respect to
the quadratic (two norm) performance function

J =r F(j0)0% (jw) + 1) Ru(jw) do (17)

where Q and R are respectively the symmetric
(usually diagonal) state and control weighting
matrices, and X(jw) and u(jw) are the Fourier
transforms of the state and control vectors. The state
(positions and velocities for vibration isolation) sa-
tisfies the differential equation

$=AX + Bu.

The quadratic performance function of LQR, eqn
(17), is well suited to this problem since vibration
isolation quality is usually measured in terms of
root-mean-square. However, some modification of
the performance function is necessary to apply this
synthesis procedure to microgravity isolation con-
troller design. The reader will note that state feedback
for the isolation problem is feedback of experiment
positions, velocities, angles, and angular velocities.
Thus, LQR can only result in inertial stiffness and
inertial damping feedback. As was shown in Section
3, these isolation techniques cannot yield acceptable
isolation performance. Thus, an LQR performance
function of the form of eqn (17) will not yield a
satisfactory controller. Note that the differential
equation does not include a disturbance term. Conse-
quently, the controller is optimal with respect to
white noise. Since the power spectrum of the micro-
gravity environment is not of this shape, the LQR
controller will not be optimal with respect to rejection
of the disturbance. Through the incorporation of a
disturbance model (essentially a shaping filter) the
LQR problem may be modified to yield an optimal
disturbance accommodating (i.e. rejection) con-
troller. This incorporates the addition of pseudo-
states to the state variable model [14].

Closely related to disturbance accommodation is
the concept of frequency weighted LQR performance
functions [15). Here, the @ and R matrices are chosen
to be even rational functions of frequency. This
results in the addition of pseudo-states to the state
variable model. Through choice of the weighting
functions, the designer can in essence shape the
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control loops [11]. This also permits the weighting of
experiment acceleration. It should be noted that for
successful application of LQR theory to the micro-
gravity isolation problem frequency-shaped cost
functions must be used. Without this, the control
resulting from the synthesis procedure would atteny-
ate the vibration at frequencies below 0.001 Hz (non-
unity transmissibility). The reader should note that
the well known robustness characteristics of LQR
controllers do not apply to most frequency shaped
designs or to plants with unmodeled cross coupling.

7. CONCLUSIONS

Successful active isolation for microgravity exper-
iments can be achieved, but only if the problem is
analyzed from a controls perspective. A passive iso-
lation analogy, while useful for an understanding of
the control problem, is not an effective design tool.
Design of active vibration control systems can best be
carried out through loop shaping. For intrusive iso-
lation platforms, this results in a high gain accelera-
tion feedback design. A two-degree-of-freedom
example was used to illustrate the instability that can
result under unmodeled cross coupling when the
control system is designed via decoupling/single loop
design procedures. The source of this sensitivity was
ill-conditioning of the controller. The LQR was
examined for the isolation problem. For synthesis of
an effective controller, the procedure must be
modified to include loop shaping.
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APPENDIX

Nomenclature

A = system dynamic matrix

a = acceleration feedback coefficient

B = system input matrix

b = rotational stiffness feedback coefficient
C(s) = complimentary sensitivity function

¢ = damping

d,D(s) = direct disturbance force
D(s) = equivalent disturbance
f.F,F(s) = actuator force
G(s) = plant transfer function
H(s) = feedback transfer function
I =moment of inertia
k = stiffness
M, M(s) = control moment
n = rotational damping feedback
P(s) = umbilical precompensation transfer function
Q = state weighting matrix
¢ = actuator placement
R = control weighting matrix
S(s) = sensitivity function
T(s) = feedforward transfer function
u = control vector
v(s) = measurement noise
x,X(s) = experiment position
X = state vector
»Y(s) = wall position
y = accelerometer measurements
z,Z(s) = decoupled measurements
A = center of mass error
6,0(s) = angular position
w, = natural frequency
{ = percent critical damping

Subscripts

a = acceleration
cl = closed loop
p = position.
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Abstract

Manned orbiters will require active
vibration isolation for acceleration—sensitive
microgravity science experiments. This
paper investigates control aspects of the
isolation problem and proposes a viable,
robust control. Since umbilicals are highly
desirable for many experiments, and since
their presence greatly affects the vibration
isolation problem, they must be considered
in control synthesis. Experiment isolation
involves reducing undesirable plant outputs,
such as excessive accelerations and
unacceptable relative displacements. The
former are undesirable due to experiment
dynamic environmental demands; the latter,
due to rattlespace constraints. Ideally,
controller design should minimize these
outputs, while considering input— and
output directionality and frequency content.
This paper investigates applying modern
control theory to the isolation problem,
incorporating frequency—weighting and
disturbance accommodation techniques. The
resulting controller achieves excellent system
performance, for plants within a reasonable
range of variations from the nominal.
Robust stability and performance guarantees
were measured by singular value and
structured singular value checks, yielding
guarantees on allowable real plant parameter
uncertainties, and on acceptable controller
and sensor phase and gain variations. The
problem of unmodeled high frequency modes
was eliminated by using frequency weighting
to reduce controller bandwidth.

’9,,
This design method has been developed
with the six—degree—of—freedom isolation
problem in mind, to which it is fully
applicable. In this paper the method is

applied successfully to the single—degree—
of—freedom isolation problem.

Introduction

The vibration environment onboard
current and planned manned orbiters will
require isolation for many microgravity
science experiments® The disturbance
frequencies are sufficiently low, and the
attenuation requirements sufficiently great,
80 as to preclude a solely passive isolation
system, 3

Since the disturbances to be attenuated
are three—dimensional (3—D)& the isolation
actuator(s) must be capable of acting over
six degrees of freedom. Although

- microgravity isolation systems have been

developed and tested® most controllers
offered to date fail to take into account the
effect of umbilicals in a 3—D isolation system
design® Since umbilicals are highly
desirable for many experiments®(e.g., for
evacuation, power {ransmission, cooling,
material transport), they must be considered
in a generally applicable control scheme.
Simp%e application of nonintrusive control
methodologies is insufficient®

The requisite multiple—degree—
of—freedom (MDOF) controller is much
more difficult to design than a
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single—degree—of—freedom (SDOF)
controller, because the isolation system has
many inputs (actuator forces) and outputs
(measured displacements and accelerations).
Multiple—input—multiple—output (MIMO)
designs can be very susceptible to unmodeled
cross—coupling between channels of input or
output® a problem not encountered in
SDOF design. The control forces used must
therefore be properly coordinated if the
controller’s performance is to be sufficiently
insensitive to unmodeled dynamics (i.e.,
robust). The design of a robust MIMO
control system is a nontrivial problem
requiring the iterative use of synthesis and
analysis tools, the former for controller
design and the latter for system stability—
and performance evaluation®

H, synthesis, the controls approach
chosen for this work, has been used
effectively in MIMO control problems?)
Additionally, the approach seems
appropriate for the present problem, since
the quadratic performance index relates well
to root—mean—square (rms) statistics and
power spectral densities, in which form
present orbiter acceleration data is currently
made availableid

The microgravity isolation problem
aboard maxmeg orbiters involves reduction
of different kinds of undesirable plant
outputs, such as excessive accelerations and
unacceptable relative displacements. The
former outputs are undesirable due to the
demands of the experiments themselves®);
the latter, due to rattlespace constraintds,s)
Since some disturbances may be directional,
since some undesirable plant outputs may be
more important than others, and since the
degree of undesirability of these outputs may
also vary with direction or frequency, the
design of an optimal controller ideally should
incorporate these factors.

Plant outputs cannot be minimized
apart from consideration of the associated
control costs, because active control both
consumes power and releases heat. Since
both of these costs are of concern in a space
environment, the control effort used should
not be excessive. And at higher frequencies,
the control effort should be reduced in order

to limit controller bandwidth for the sake of
robustness concerns®

H, synthesis, more commonly known as
LQG (Linear Quadratic Gaussian) or LQR
(Linear Quadratic Regulator) synthesis,
allows the designer to develop an optimal
regulator that consists of full state feedback
using constant feedback gains. Inaccessible
states are reconstructed by an asymptotic
observer that uses constant observer gains.
In the LQR synthesis approach the observer
gains are chosen to produce a stable observer
with poles placed as desired by the
designerd? In the LQG synthesis approach
the observer gains are selected to minimize
the rms error of the observed states from the
actual states, based on the assumption that
the process— and measurement noise vectors
are zero—mean white Gaussian(o)

H; synthesis can be extended to allow
the controller (i.e., the regulator and
observer) gains to be optimized for colored
process noisel% 10 Another extension
permits the states and controls
independently to be "frequency—weighted",
80 that certain frequencies of each are more
heavily penalized than others, in an rms
sensel% 10 A third extension allows for the
inclusion of deterministic disturbance
information into the optimized control
expression (13, 14, 15)

The application of basic H; synthesis to
the tethered microgravity isolation problem
was first proposed in 1990¢8); but the most
complete treatment to date, of the full
extended H; synthesis approach, appeared a
year laterd? Xn algebraic introduction is
published in reference (18), and the full
deterministic solution is developed in (19).
The present paper presents the results of a
systematic application of the extended H,
synthesis method to a realistic 1-D isolation
problem. The resulting controlled system is
evaluated using singular values and
structured singular values ("u analysis") to
determine guarantees of system performance
with uncertainties in the umbilical, payload,
sensor, and actuator models. An excellent
introduction to much of the pertinent
analysis methodology is contained in
reference (20).



Problem Description

The general 3—D vibration isolation
problem for the tethered payload has three
translational and three rotational degrees of
freedom. In reference (20) Allan an Knospe
presented a brief survey of several published
3-D syspension designs. The extended H,
synthesis — 4 analysis approach can be
readily applied to a 3—D problem once the
system model has been reduced to state—
space form (i.e., consisting of a set of 1st
order linear ordinary differential equations).
However, the simpler 1-D problem offers the
benefit of providing a simple model that is
highly conducive to developing a physical
intuition. Further, the specific
mathematical model is much less
geometry—dependent. The mathematical
theory summarized below is generally
applicable to either the 1-D or 3—D
problem; but for the reasons noted above, it
will be applied only to the 1-D problem in
the application section of this paper.

Let the payload (e.g., experiment) be
modeled as a lumped mass with inertial
position x(t). Assume that the orbiter ie.,
experiment rack) has inertial position d t),
and that massless umbilicals characterized
by a stiffness and a damping connect the
payload and orbiter. Suppose further that a
Lorentz actuator applies a control force
proportional to the applied current u(t) with
proportionality constant a. Such a model is
shown in Figure 1. Typical parameter

Z

8 x(t)

Figure 1.--Physjical representation of modeled
one-dimensional system

values were chosen: mass = 75 Ibm, stiffness
= 1.544 1bf/ft, damping = 0.01138 Ibf—sec/ft
(¢=10.3%),and a =2 Ibf/Amp. Clearly
this model is inaccurate, since the plant will
not be a perfectly rigid mass and since the
umbilical is neither massless nor accurately
characterizable by a single stiffness—and—
damping model. The differences between
the actual system and the nominal system
will be addressed later. It will be seen that
the system (consisting of payload, umbilical,
sensor(s), controller, and actuator) is robust
to anticipated uncertainties gi.e., remains
stable and achieves good per ormance).

The goal is to find a feedback controller
such that the controlled system satisfies the
following specifications:

1. Above 0.1 Hz the payload acceleration
X(t) should be 40 dB below the orbiter

acceleration d(t).

2. Below 0.001 Hz the payload vibration
x(t) should track the orbiter vibration
d(t) to within 10 percent, in order to
prevent collision of the payload with the
walls of the experiment rack®)

3. The payload should track perfectly the
DC motion of the orbiter, where no
relative motion can be tolerated.

4. The loop gain of the system (plant and
controller) should be less than 0.1 above
200 Hz, to avoid controller excitation of
orbiter— or payload flexible modes.

5. The system should remain stable and
exhibit good performance for anticipated
inaccuracies in the system model.

These specifications are derived from the
available information concerning existin
and required vibration environments {(Dwhile
recognizing that rattlespace constraints will
require orbiter tracking at very low
frequencies®

Figure 2 shows the open loop
transmissibility of the plant (i.e., its
amplification factor, plotted as a function of
harmonic—input frequency), along with
specifications (1) and (2).
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Basic Solution

The equation of motion can be expressed
in the state—space form

x=AXx + Bu + E; ws,
y = Cx + Du + Mn;,
where wg and ng are white noise vectors

reflecting the power spectral densities of d
and of the sensor noise, and where the vector
x includes states derived from the equation
of motion (e.g., inertial or relative positions
or velocities, or accelerations), along with
disturbance—accommodation pseudostates
and frequency weighting pseudostates if
desiredd?

As outlined in reference (17), once the
problem is expressed in the above state
space form with a suitably chosen quadratic
performance index, an optimal controller can
be found readily by the solution of an
algebraic Riccati equation. The solution and
solution methods are well-known. The
resulting controller uses a control current
that employs full state feedback, where
inaccessible states (or pseudostates) may be
reconstructed using an asymptotic observer.

- If the type of asymptotic observer used is a
Kalman—Bucy filter, the observer design also
involves the straightforward solution of
another algebraic Riccati equationd? Thus,
a controller can be synthesized in a
straightforward manner. Considerable
insight is necessary, however, in determining

how to use the powerful tools of
disturbance—accommodation and frequency
weighting to one’s advantage. Once a
controller has been synthesized, it must then
be evaluated to see how it fares against the
design specifications. This check is
straightforward for specifications #1, 2, 3,
and 4. However, for specification #5 the
check is much more difficult.

u analysis is a powerful tool that can be
used to determine how much uncertainty can
be tolerated at various locations in the
closed loop system. The measures are
conservative, due to aspects of the
mathematics involved; but the results
provide guaranteed minima of allowable
uncertainty magnitudes that can be of
immense value to the designer. In brief, the
designer places one or more complex
uncertainty blocks A(s) at appropriate
locations in the system transfer function
block diagram. By p analysis methods he
can then determine how large (2—norm) the
uncertainty (or uncertainties) can be
without driving the system unstable or
exceeding specified performance limits.
Typically uncertainty blocks fall into the
categories of multiplicative input,
multiplicative output, additive, and
performance uncertainties. These can be
used to provide conservative measures of
allowable actuator gain and phase
variations, sensor gain and phase variations,
and unmodeled higher frequency plant
dynamics, along with simultaneous
performance ﬁua.rantees. Feedback
uncertainty blocks can be used as well to
provide measures of allowable plant
parameter variations from nominal values.

The rest of this paper is primarily
devoted to helping provide insight into how
to use extended H; synthesis and 4 analysis
effectively, for microgravity isolation, by
reviewing a logical application of the
approach to a realistic 1-D problem.

Controller Design

To begin the desi%n process, the
one—dimensional problem was first expressed
in state—space form, with payload relative
position, relative velocity, and acceleration



selected as states. Although many other
state choices could have been made, these
three were chosen to minimize the number of
states necessary and to maximize the
physical intuition possible. The selection
would result in a state feedback control that
respectively modifies the effective umbilical
stiffness and damping, and the effective
payload mass—all being familiar, accessible,
and intuitive system parameters. Relative,
rather than inertial, position feedback would
help to avoid exceeding rattlespace limits;
and relative velocity feedback would provide
3 means of damping out system resonances.
The selection of acceleration as a state was
considered desirable due to insight gained
from an analogy to passive isolation systems.
A controller which increases effective
payload mass ugby negative acceleration
feedback) would potentially be able to
accomplish disturbance rejection without
unnecessarily sacrificing stability— or
performance robustness.

A second important feature of the
problem formulation was the decision to
incorporate disturbances of two different
kinds, the direct (i.e., onboard the
experiment) and the indirect (ie., acting via
the umbilical). It had been observed, by
examining the pertinent transfer functions,
that reducing the effective umbilical stiffness
could aid in indirect disturbance rejection
only, but that increasing payload effective
mass could help reject disturbances of both
kinds. Although the primary type of
disturbance was considered likely to be the
indirect, a means was needed to force the
LQR-KBF ga.lso known as LQG) design
"machinery" to increase effective mass so as
to result in a robust controller, Including a
direct disturbance provided this mechanism.

After completing the problem
formulation, the next step was to develop a

computer code for use in design and analysis. .

A PC—based design code was written in
MATLAB to allow for frequency accom—
modation of both direct and indirect
disturbances. A large selection of frequency
weightings and disturbance accommodation
hilters was made available to the designer.
The code computes both feedback ang
observer gains. A number of analysis

routines were also written to allow the
designer to evaluate the resultant designs for
purposes of comparison. The number of
System states, System performance, stabih’ty
robustness, parameter sensitivity, and
observer quality were items whose
comparisons were facilitated by these
routines.

With the design and analysis tools in
place, the next step was to develop the
desired controller. In order to make the
controller as simple as possible, it was
decided to begin with the basic LQG
approach (no frequency weighting, no
disturbance accommodation, no direct
disturbance) and to add complexity as
needed. At each stage of additional
complexity an iterative cycle of design and
analysis was employed in an attempt to get
the "best" achievable controller at that level
of complexity.

The basic LQG approach yielded a
satisfactory controller in terms of
performance; but it had almost no stability
robustness to changes in umbiljca] stiffness
from the nominal (gas measured by feedback
uncertainty). This lack of robustness was
due to the fact that LQG found adding
negative stiffness to be a "cheaper" means of
indirect disturbance rejection than adding
effective mass. No frequency weighting was
found which could rectify this problem.

A direct white disturbance was added in
an attempt to force the LQG design
"machinery"” to add effective mass.
Although there were some gains in stability
robustness this was due entirely to changes
in observer gain matrix L. The feedback
gain matrix K remained unaffected (note
that this is fundamental in LQG theory and
is not a numerical problem), and the
feedback stability robustness was still
unsatisfactory.

Disturbance accommodation, with a
lowpass filter applied to a large direct
(white) disturbance, resulted in 3 controller
with excellent feedback— and multiplicative
input stability robustnesses, as measured by
singular value checks. The multiplicative
output stability robustness was unacceptably



low if cross—coupling was considered possible
between states, but structured singular value
checks indicated that without cross—coupling
the allowable multiplicative output
uncertainty was quite satisfactory. Since
effective stiffness, effective damping, and
effective mass of the controlled system are
uncoupled for the true one—~dimensional
problem, the stability robustness measures of
the system were considered acceptable.
Further, the performance was excellent,
easily exceeding the specifications. However,
the controller gains were still large at higher
frequencies where unmodeled system modes
were of concern (see specification # 4). It
was therefore necessary to use state— and
control frequency weighting to force the
controller to "turn off" by approximately

100 Hz (i.e., to reduce loop gain below a
magnitude of one) so as to avoid exciting
unmodeled flexible modes.

To reduce the loop gain at the higher
frequencies it was necessary in that range (1)
to place a high weight on control, (2) to
apply low weights to all three states, and (3)
to reduce the direct disturbance. At low
frequencies the control weighting was left
constant (i.e., "flat"), in an attempt to
minimize the number of added pseudostates.
However, the resulting closed loop system
now had very poor low frequency stability
robustness to parametric uncertainties, even
though it both retained its excellent
performance and now provided the desired
low controller bandwidth.

A classical design approach to the
problem provided a simple solution to the
robustness issue. It was noted that for a
controller with acceptable nominal

~ performance the low frequency asymptote for

controller gain could have slope —1 or 0 or
greater (Bode—a, log—log scale). That is,
control gain at DC could be zero (slope > 1),
finite (slope = 0), or infinite (slope = —1).
Zero DC controller gain would, of course,
result in a closed loop system that would
achieve the unit transmissibility of the open
loop system at low frequencies, as desired.
But by using a control weiﬁhting filter with
zero DC gain (slope > 1) the extended H,
synthesis "machinery™ could be freed to
consider finite or infinite DC controller—gain

options. Consequently the control weighting
was made to be zero at DC S]a.t the expense
of adding a pseudostate). The result was a
controller that satisfied the design
specifications and exhibited goo stability
robustness to parametric and to
multiplicative input— and output
uncertainties. Considering (for the moment)
only single~parameter uncertainties,
stability was guaranteed for umbilical
stiffness to within +99.7% of nominal, and
umbilical damping could be essentially
unknown. Payload mass needed to be
known only to within +65.2% of nominal.
Having these initial favorable indicators of
system robustness the next step was to
reduce the controller size. Further

robustness analysis would then be conducted
on the reduced—order controller.

The controller described above was a
ninth—order controller (i.e., had nine states),
with payload acceleration as its only
required input. Other states and
pseudostates were reconstructed in the
observer. To reduce the controller to a
smaller order, a routine was written in
MATLAB in order to permit removing high
frequency modes gmoda.l truncation) and
weakly controllable and —observable system
dynamics3) The result of applying this to
the ninth—order controller was 3 third—order
controller that has all the essential features
of the ninth—order one. The loop gain,
controller, and transmissibility plots for this
reduced controller are shown in Figures
da,b,c. Note from the transmissibility plot

100 :
- AT T ]
g | )
| ] .
§ -
-50‘ ——.,
B\ TR T R 100 107 ot 1o 100 100
Frequency (Hz)
= l
= lmb /
3 J
0
a. -le I \ s
B | T 10+ 107 10? 104 100 10 10
Frequency (Hz)
Figure 3a.--open loop bode plots from control
to -control (negative loop gain)
6



e 150,
[ ]
& 100
:w 1
- 3 o
e 1014 T T S e T
Frequency (Hz)
] .
5 ,,O:B , ’ { : (\
B é -mt \1\ V \\l J
Phes L T T - T 100 W%i:)},
- Frequency (Hz)
Figure 3b.--Controllaer bode plots
100 _—
) o] L1 [
ool ' ] ) \ [ ﬁf
—_ 10t } ] .R.I Open Loop; !
§ 10 ] i:los.qj Loop J O
-~ d o] 1
lo:L_A, { x“inh - ~ |
l

|
J
l
!

I
104 103

107 10t 0 102
_ Frequency (Hz)
Figure 3c.--Open loop and closed loop
system transmissibilities
- that the transmissibility is unity up to 10-3

Hz and that it is

Notice further that the op
loop Bode plots merge at
This is due to the fact t
essentially "turned off"

(see Figure 3b).

There are four ba.

below 10-4 at 0.1 Hz.
en loop and closed

about 100 Hz.

made of any controlled system: nominal

stability,
stability,

consecutively.

The extended

below,

for this portion provides an inherent

nominal performance, robust
and robust performance. These
four checks are considered

guarantee of stability for a nominal plant

with full state feedback. Further, the

"separation principle"
perfectly known plant

B I
109

hat the controller has
by that frequency

sic checks that must be

H; synthesis method used

guarantees that for a
a stable asymptotic

observer will not destabilize the system.,
Thus, nominal stability is assured with the
ull order observer, provided the observer
itself is stable. Reducing the controller
order removes this guarantee, but simple
eigenvalue checks verify that both the
reduced third—order controller as designed
and the associated controlled System are
stable for the nominal plant. A simple check
of the loop gain Bode plot (Figure 3a)
confirms the conclusion that t e closed loop
system is stable, since it is known that the
loop gain is minimum phase.

The second necessary check is of
nominal performance. As indicated by the
closed—oop transmissibility plot (Figure 3c)
the nominal performance is quite
satisfactory. Note that the "less than 10-2"
spec at 0.1 Hz is surpassed by more than an
order of magnitude. This overdesign was
intentional, and necessary, since plant
modeling errors (open loop system, sensors,
and actuators) will certainly degrade

ormance margins.

Robust stability measures are necessary
to determine whether the closed—loop system
will remain stable given the anticipated
Sensor, actuator, and plant parameter
uncertainties. Three different types of
robust stability measures were used, for
guaranteeing system stability for
multiplicative input, multiplicative output,
and feedback uncertainties below certain
levels. The multiplicative input uncertainty
allowable was found to be equivalent to a
guaranteed phase margin (interval) of [—48°,
+48°], and to a guaranteed gain margin
(interval) of [0.304, 5.434]. The actual
margins are even larger (phase margins:
[-55°, +55°), gain margins: [0,+00]). Since
only one plant output is sensed (viz.,
payload acceleration), the multiplicative
input and output robust stability guarantees
are identical. A feedback uncertainty
measure was used to determine guaranteed
minimum stability tounds on uncertainties
in umbilical stiffness and damping, and on
payload mass. It was found, as noted
previously (p. 6), that closed—oop system
stability was guaranteed for
single~parameter uncertainties much

larger
than anticipated. It was found, by



considering the feedback uncertainty
structure, that for simultaneous mass,
damping, and stiffness uncertainties of
+20%, +100%, and +69%, respectively,
system stability could be assured. Higher
frequency modes of the system were
considered not to be a significant concern
since the controller bandwidth was limited
during design.

Finally, measures were needed of
performance robustness. Structured singular
value plots were made to find conservative
bounds on multiplicative input (and output)
uncertainties that would not lead to plants
with unacceptable performance. Below 10-3
Hz it was found that for combined sensor
and actuator uncertainties of up to +11° in
phase or of +19% in gain the performance
can be guaranteed to remain acceptable. At
higher frequencies the guarantees are much
better, so that by 220 Hz uncertainties of up
to +1800 in phase or of +200% in gain are
permissible.

Structured singular value plots were also
used in an attempt to find performance
robustness guarantees in the face of known
parametric uncertainties, but the effort was
only partly successful. The checks led to the
conclusion that for single—parameter
uncertainties in stiffness of +40% both
stability and acceptable performance could
be assured. However, single—parameter
uncertainty bounds found by this method on
damping and mass were too conservative to
be useful. Consequently, real parametric -
studies were conducted on plant—uncertainty
effects on closed—loop performance. It was
found that closed loop performance appeared
acceptable for the various combinations of
parametric uncertainties examined, with
mass and stiffness varied in the intervals
[-50%, +100%) and [—20%, +100%),
respectively, and with damping varied by
more than ten times its nominal value.

Conclusion

The above extended H; synthesis — u
analysis approach was found to produce a
controller that easily satisfies the competing
demands of the posed 1-D microgravity
vibration isolation problem. Further, unlike

the classical approach, it is readily
extendable for use on a 3—D problem.
Frequency weighting and disturbance—
accommodation were both found to be
necessary if Hj synthesis is to be used in
involving the posed isolation problem. Their
inclusion, along with a judicious choice of
states, provides the designer with a powerful
and intuitive set of weapons for his design
arsenal. Disturbance accommodation of a
direct disturbance model was found to be
effective in forcing the H; synthesis
machinery to avoid negative—stiffness
solutions. The result was an actively
controlled system that uses a "smart" form
of acceleration feedback to overcome the
robustness problems that commonly plague
the basic LQG synthesis approach.
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1 Introduction

It is generally accepted that microgravity space experiments will need to be
isolated from the vibrations inherent on spacecraft in earth orbit{3]. The funda-
mental constraint on any isolation system'’s capability is the available working
envelope[4]. Figure 1 shows the relationship between the envelope (peak-to-peak
displacement) and frequency for several sustainable RMS acceleration levels.
The graph is for a one degree-of-freedom case and assumes sinusoidal vibra-
tions, but the relationships are acceptable for order of magnitude estimates
even if these assumptions are relaxed.

No definitive specification of the required isolation levels or frequency range
exists. The proposed US Space Station usable specification[3] is also shown in
Figure 1. It is claimed that vibrations below this curve will not adversely affect
microgravity experiments. We have pursued the design of an active isolation
system with a ‘reasonable’ envelope of 4 inches of travel, and a sustained 1 ug
RMS acceleration. It can be seen from the figure that this will offer isolation
down to 0.002 Hz. The amplitude to which vibrations can be attenuated is con-
strained only by controller design and available instrumentation. Operation at
lower frequencies, however requires a larger envelope, which becomes prohibitive
in terms of available spacecraft space. \We have also required that the system
be active in all six degrees-of-freedom, with a rotational range of 40 degrees.

Redundant coarse-fine schemes with magnetic levitation for vibration iso-
lation are discussed in the robotics literature[2]. This approach is particularly
attractive in the microgravity application since it allows the use of magnetic
levitation while overcoming range of motion limitations. We have chosen the
Stewart platform for our coarse stage and a novel magnetic bearing for the
fine stage. The approximate regions of activity in the frequency-displacement
plane of these two devices are shown in the figure. Both stages act to attenu-
ate spacecraft vibrations, effectively reducing vibration amplitudes below their

S
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Figure 1: Peak-to-Peak Displacement vs. Frequency for Various RMS Acceler-
ations, U. S. Space Station Usable Specification, and Activity Regions of the
Two Actuator Stages

active regions on the plane. As an example, it can be seen in the figure that
a vibration of the spacecraft with 10 inches of displacement at a frequency of
1 Hz falls outside the active region and could only be partially attenuated. It
should be noted that such a large vibration is unlikely. If the displacement was
only I inch, however, the coarse stage would absorb all of it except about 0.005
inches, and the remainder would be reduced down to the micro-g level by the
fine stage.

The combination of the Stewart platform and a magnetic bearing allows
continuous isolation at frequencies above 0.002 Hz, and a compact, reliable
package suitable for the application. These choices and some preliminary design
concepts will be discussed in detail.

2 Stewart Platform

The Stewart platform is a six degree-of-freedom parallel manipulator first pro-
posed by Stewart[3]. [t has been extensively used in aircraft cockpit simulator



applications, and substantial design information is available in the literature(1].
Figure 2 shows the mechanism in our proposed configuration. Six linear ac-
tuators (legs) connect a base (bottom) to a platform (top). The base will be
mounted in the spacecraft and move with it, while the platform tracks an inertial
teference frame. We propose the use of stepper motor driven ball lead-screws
as actuators.

Figure 2: The Stewart Platform

This mechanism was chosen over other candidates such as a carriage/gimbal
approach, or a serial linkage mechanism because it has the following features:

e Inherent rigidity. The parallel connection of the actuators gives the mech-
anism rigidity on the order of the extensional rigidity of the actuators.
For the proposed actuators, this will allow controller design to ignore the
dynamics of the mechanism. The effects of ‘umbilical’ connection to the
platform will also be negligible.

o Deferminate inverse kinematics. The actuator lengths required to achieve
a prescribed orientation are found directly from a coordinate transforma-
tion from the base to the platform frame. This is seldom the case for a
serial linkage. This will also simplify control.

o Compactness. The configuration proposed here places the fine stage on
top of the platform for convenience in testing. A fully developed imple-



mentation could locate the fine system and microgravity experiment in
the space between the base and platform, resulting in a compact package.

The Stewart platform has some disadvantages that must be considered. It is
nonlinear in its response to actuator lengths, its general direct kinematics have
not been discovered in closed form, and it has singularities in its operational
space. The fist two problems can be overcome with digital controls. The singu-
larities, which are points or loci where the mechanism gains a degree of freedom
and the actuators can lose control of it, must be addressed in design.

A simulation code has been written to allow exploration the design alterna-
tives. Figure 2 is an example of its output. Preliminary results indicate that our
specification (4 inches translation, 40 degrees rotation) will be achievable with
actuators 10.5 inches long in the retracted position, and with 9 inches of stroke.
The simulation can confirm that singularities are safely outside the working en-
velope. Commercial actuators with the required range, load capacity, speed and
acceleration have been identified.

3 Magnetic Bearing

Two axes of a six axis magnetic bearing are shown in Figure 3, mounted atop
the Stewart platform. A ferromagnetic cube is at the center of the bearing.
Two pole pieces protrude from each of its faces (four shown) and each pole
piece is surrounded by a coil. This part of the structure is called the core and is
mounted to the platform with four posts. Three ferromagnetic bands surround
the core (one shown) forming three independent magnetic flux paths. The core
is capable of exerting three orthogonal forces, and three orthogonal torques on
the bands. For the axes shown, equal currents in each pair of adjacent coils will
cause magnetic flux to flow in a local circuit, causing an attractive force to the
band. By controlling these currents a prescribed force can be exerted on the
band along the axis that crosses the page form left to right. If the currents in
adjacent coils are not equal, some flux will low around the outside of the band
and through the center of the cube. This will create a controllable torque on
the band around the vertical axis.

Similar pole pieces and coils will protrude from the other faces of the cube,
and corresponding bands will surround them. These have been omitted so that
all parts can be seen. Also, the size of the bearing and the gaps have been
exaggerated for clarity. Flux sensors will be mounted in the pole pieces and
this will allow the position of the bands relative to the core to be calculated
for control. The microgravity experiment will occupy the space surrounding the
bearing, and be attached to the bands.

This configuration was chosen over other levitation approaches such as Lor-
entz actuators or magnetic actuators located on the periphery of the experiment
package because it has the following advantages:



Figure 3: Magnetic Bearing

e Compactness. The high force capability of the magnetic bearing relative

to a Lorentz actuator of similar size and power consumption suits the
application. Testing in earth gravity will be facilitated, and levitation
during launch to protect sensitive instrumentation may be feasible. Also,
the rigid structure required to mount actuators around the periphery is
avoided.

Force/torque balance and rotational range. Actuators capable of the re-
quired forces mounted on the periphery of the experiment are capable of
torques far greater than is required, and they limit the rotational range
of the experiment. The proposed design approach brings the relative
force/torque magnitudes closer to the requirement, and allows substan-
tial rotational range.

Integral sensor capability. Compact semiconductor magnetic flux sensors
(hall effect or magneto-resistive) can be utilized to both stabilize the sys-
tem and infer relative position. No elegant integrated approach is known
for Lorentz actuators.

Magnetic bearings have typically been avoided in ‘large gap’ applications be-
cause of their nonlinearity (force is proportional to the square of flux). We
feel that emerging Digital Signal Processor technology and control work will



components to be ysed. Simulation w
form that meets the specification, an
Finite element methods will be ysed
A simultaneous effort i controller design will be undertaken.

then be constructed to verify the design and quantify the perfo
actuators and controller together.

design effort.

allow us to overcome these limitatio
to develop a design that is both cap

nonlinearities associated with saturation and flux path vari

4 Conclusion

A conceptual design is proposed for a coarse-fine actuator pair that synergis-

tically combines two dissimilar six degree-of-freedom actuators. This design is

particularly suited to the microgravity isolation application because of the way it
Spans the useful portion of the frequency-dj

is shown together in Figure 4.

Figure 4: Coarse-Fine Actuator

Ongoing work wil] more precisely define the exact geometries, materials, and

ill allow the specification of a Stewart plat-
d uses commercially available components,
to optimize the magnetic bearing design.
A test rig will
rmance of the

We look forward to and welcome any input that can be worked into our
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1 Introduction

The authors have previously presented a conceptual design for a coarse-fine actuator pair and discussed
its efficacy in the microgravity vibration isolation application[1]. The coarse stage comprises a Stewart
platform [2] which is mounted in a spacecraft and isolates low frequency, high amplitude vibrations. The
fine stage is a novel magnetic bearing mounted on the Stewart platform (between the legs for compactness)

and levitates the experiment to isolate all frequencies at low amplitudes. The combination is illustrated in
Figure 1.

Figure 1: Coarse-Fine Actuator Pair

This paper will present a survey of published 6 DOF levitation designs and discuss a novel magnetic
bearing in terms of design, predicted performance, and control issues.

"Supported in part by the NASA Lewis Research Center and the Commonwealth of Virginia’s Center for Innovative
Technology.



2 Survey of Published Designs

Several designs for 6 DOF levitation are discussed in the literature. A comparison of the specifications for
these designs is given in Table 1.

Group Trans. Rot. Force Envelope Weight | Actuator Sensor
Honeywell | +£5 mm | +1.6° 43 N 27x34x50 cm 36 kg | Mag. Brng. | Eddy & Flux
N. Wales | 5 mm | < £.2° | .04 N ¢ | 100x100x100 cm * ? Lorentz Capacitive

NASA 4 mm | £3°° | 445N 30x30x15 cm © ? Mag. Brng. Eddy

SatCon | 10 mm | +8°°¢ 4N 40x40x12 cm © 4.9 kg Lorentz Eddy

IBM +5 mm +4° 32N 25x25x15 cm ¢ ? Lorentz Optical

Toshiba | +2 mm | +£1.5° | 20N ¢ 25x25x20 cm 8 kg | Mag. Brng. Eddy

?Requirement, not limitation
®Includes experiment package
“Estimated by authors

Table 1: Comparison of Published Designs

Four designs specifically for microgravity isolation have been published. Honeywell (3] has a well devel-
oped system called FEAMIS with which they have demonstrated impressive isolation performance. The
system is designed for the Space Shuttle experiment configuration. The University College of North Wales
(4] also has a well developed system designed for the European Space Agency experiment configuration.
NASA [5] and SatCon [6] both have laboratory levitation systems.

Two levitation designs were developed for different applications, but they are mentioned here because
they are similar and could be easily adapted to the isolation application. IBM [7] has a laboratory levitated
robot “wrist” which enhances robot accuracy and performance. Toshiba [8] has a satellite antenna pointing
system which is fully developed. Both devices have demonstrated positional accuracies on the order of 1 um.

Isolation of vibrations with large amplitudes — typically occurring at low frequencies — requires a
large translational range. SatCon’s system has the largest range, but there is a significant tradeoff with the
device’s force capability. A coarse-fine approach would allow both a large range, provided by the coarse
stage, and a high force capability, since the levitation gaps are small. There is no available data on the
rotational range requirements of the application. Isolation with an umbilical disturbance requires a high
force capability as is offered by the systems from Honeywell, NASA, IBM, and Toshiba. Space and weight
should be minimized in any spacecraft. SatCon, IBM, and Toshiba’s systems offer advantages in envelope
space and weight. :

The choice of the actuator technology between Lorentz force and magnetic bearings has no definitive
advantage. Lorentz actuators offer linearity, simplicity, and compactness. Magnetic bearings offer higher
force capability and lower power consumption. particularly if gaps are minimized.

Four position sensor technologies offer promising performance. Eddy current position probes are simple
and robust, but bulky and heavy for large gaps. Capacitive sensors are simple and light weight, but can
be noisy in unconstrained environments. Optical lateral effect photo-diodes are compact and quiet, but
they require substantial supporting electronics. Hall effect flux sensors can be used with magnetic bearing
designs both to linearize the control problem, and to measure position.

3 Design

The magnetic bearing proposed has two parts: a stator which is attached to the spacecraft, and a sur-
rounding “flotor” to which the experiment is attached.

[ oV



The stator is illustrated in Figure 2. It has twelve pole pieces and coils arranged around the surface
of a cube. The cube and pole pieces are ferromagnetic. Each pair of pole pieces and the region of the
cube to which they are attached comprise a typical “horseshoe” electromagnet causing an attractive force
toward the nearby flotor. Magnetic flux through the center of the cube will cause an imbalance in the flux
levels of a pair of pole pieces, resulting in a net torque on the flotor. Differential Hall effect sensors will be

located in the cube side of each pole piece to measure the local flux. All electrical connections will be to
the stator.

Figure 2: Stator and Typical Coll

The flotor is illustrated in Figure 3. Three ferromagnetic bands are rigidly attached to each other, but
form independent flux paths. The bands are thicker in the region near the pole pieces to avoid saturation.
Flux which passes through the center of the cube is returned through the remaining portion of the bands.

Four mounting posts will attach to corners of the cube, and pass through clearances in the flotor. These
posts could carry cooling fluid to be circulated through the stator if it is required.

Design equations relating force and moments to the coil currents will be derived below referring to
Figure 4. The figure shows a schematic slice through the stator and flotor with appropriate nomenclature
and sign convention information. It should be noted that a complete model comprises three such systems,
but they are identical and orthogonal, so only one will be analyzed. :

The relationship between coil currents (i1,...,i4) and the force and moment generated in one slice
of the stator (Fy, M,) can be derived from Maxwell's Equations. The first Maxwell equation (1), which
relates magnetic field intensity (H) around a closed path to the electric current density (J) through that
path, is discretized and applied to closed loops drawn through the slice. N is the number of turns in each
coil, and G; are the air gap lengths which are dependent on the stator’s position relative to the flotor.
The iron flux paths are ignored because their reluctance is low relative to that of the air gaps. Many such
equations can be written (2), but only three are independent.

feu'dl=/s‘l-da (1)
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The second Maxwell equation (3), which ensures conservation of magnetic induction (B), is used to
obtain a fourth independent equation (4).

\Y

o
il
(=t

3)

By+By—-B3—-By4=0 (4)

We can assume linear magnetization in the air gaps (5), where i is the permeability of free space, to
obtain a relation between magnetic induction in the gaps and coil currents (6).
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The four gaps are geometrically related to the offset of the stator with respect to the flotor by the
relations (7) which assume small angles.

Gy =Go—y— st
Gy =Go—y+ s
Gy=Go+y— s
Gy=Go+y+sb

Go is the air gap length with the stator centered in the flotor.



The magnetic energy stored in the magnetic bearing (wm) is found from (8) where A, is the area of
the pole faces.

Wm

/ooB'HdV (8)

2 (B}G1 + B}Ga + B3Gs + BG)
Ho

]
l:hw“_.

Lo

The force and moment on the stator are found from the relations (9) and (10).

dwm

Fv - ay (9)
dwm

M: =g (10)

After considerable algebraic manipulation, and introduction (without loss of generality) of the linear
current transformations (11) we obtain the force and moment relations sought (12) and (13).

h=u+i+1i3+14
J2=4 —ta+i3— 14 (11)
Ja=ip—~ipg— i3+ 14

_ AgN 1o (Goja + 851 + yjs) (G3js = 625253 + Goyja + 8syj1)
4G, (G2 - 6252 — y2)*

AgN%spo (Goja + 0sjy + yis) (GEir + Gobsja + Osyjs — y*j1)
4G, (G2 — 62s? — y?)*

The current j; is analogous to the bias current in a conventional bidirectional thrust bearing and
could be fixed at a constant value — nominally half of the maximum current. The force generated is
predominantly driven by j; and the moment by j;. The system is unstable (negative stiffness) in both
translation and rotation. The currents 7;,...,74 can be found by a pseudo-inverse technique from j, 2, j3.
Closed form analytic inverses to (12) and (13) have been found for a known position.

£y

(12)

M, =

(13)

4 Predicted Performance

The equations of the previous section were used to predict the performance of a specific design. The design
has a center cube of 2 in. on a side, pole faces of 1 x .5 in., and pole length of 2 in. Maximum current
is determined by allowing a coil current density of 5000 amp/in? which is known to be conservative from
previous designs. The gap in the centered position was chosen to be .125 in. plus an allowance of .030 in.
for inclusion of flux sensors and a protective layer on the inside of the bands. The resulting specifications
for the design are presented in Table 2. The 53 N force is a continuous worst case, with the stator moved
away from the flotor in the direction of the force. The continuous force capability in the centered position
is 175 N. Intermittent force capability is limited only by the current capability of the amplifiers, and the
saturation limit of the magnetic material used. Using Vanadium Permadur with this design, saturation
would occur at about 1000 N. Of the 4.5 kg weight, the flotor comprises only 1.2 kg.



Trans. | Rot. | Force Envelope Weight
+3.2mm | £7° | 53 N | 15x15x15cm | 4.5 kg

Table 2: Specification of UVA Design

When compared with the designs presented in Table 1, the UVA design has several advantages. The
envelope is substantially smaller than any of the previous designs, while the performance is similar. In
addition to saving space, this compactness allows the flotor to be naturally rigid, and thus avoids control
problems with structural dynamics. The design is quite dense in comparison with the others, but it is
lighter than the lightest for which data were available.

5 Control

A regulator has been designed to reject the disturbances caused by the umbilical connection to the exper-
iment. A schematic is shown in Figure 5. Nonlinearities in the magnetic bearing are eliminated by using
flux feedback in a minor loop {3]. Six accelerometers mounted on the flotor produce a generalized accelera-
tion signal which is fed back through a linear controller. More details on the controller are available in [9].
The desired control force is processed through an inverse magnetic circuit model to obtain a desired flux
signal. This model could be either a digital algebraic model, or an appropriately trained neural network.

Magnetic Bearing
1 ] .
e
Trans- i : B | Magnetic : F Plant X
#1 Permeance 1 Coils o P > .
X 1 Circuits 1 Dynamics
Amplifiers ] | (4= Umbilical
a Disturb
la e e e - -- [} i ance
¥ yaf
Flux Hall X X-D)
Control < Sensors 44— Noise
D) ¥
Noise —W Acceler- +
ometers .
\ - Relative
Bd ll:l::"ékL i [(‘Zg\ne::)"cr M Position [4— Noise
Model (H2) - Sensors

Figure 5: Control Schematic

A relative position sensor has not been chosen but the optical scheme used in IBM’s design is a strong
cendidate. Alternatively, the current and flux signals could be processed to infer position [10]. The purpose

of the relative position signal is only to prevent collision with the walls, so accuracy demands are relatively
low.



6 Conclusion

A design for a novel magnetic bearing, proposed as the fine stage of a coarse-fine actuator for microgravity
vibration isolation, has been presented. The bearing is novel in that it uses a geometry that has just
three independent flux path systems. This contrasts the twelve flux path systems (six bidirectional thrust
bearings) used in conventional designs. The novel design results in compactness, light weight and high per-
formance, when compared with the published designs. A control system is proposed to reject disturbances
caused by an umbilical connection to the experiment.

Future work will focus on building a laboratory version of the bearing and control system.
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The limitations on the isolation of stochastic vibrations for microgravity space experiments are explored.
- These limitations result from the restricted interior space available for vibration isolation. A one-degree-of

tory within a pair of stochastic walls. The wall motion is characterized by an ergodic, stationary, zero-mean,
Gaussian random process with known power spectral density. The geometry of the wall trajectories is defined
in terms of their significant extrema and zero crossings. This geometry is used in defining a composite trajectory
that has a mean square acceleration lower than that on the optimal path satisfying the stochastic wall inequality
constraints. The optimal control problem is solved on a return path yielding the mean square acceleration in
terms of the distributions of significant maxima and first-passage time of the wall process. The methodology is
appliedto a microgravity isolation problem to find the lower bounds on root-mean-square acceleration given the
disturbance power spectral density.

Nomenelature A = Lagrange multiplier for dynamic equations
A = matrix in state dynamics ¢ = Lagrange multiplier for final condition
B = vector in state dynamics v = expected frequency of upcr_ossings (cycles)
- < = constants in optimal control U = expected frequency of maxima
d = microscopic component of y(r) w = frequency, rad/s
F = cumulative distribution function Wq = damp;d nalura.l .frequency, rad/s
I = probability density function 3 = damping coefficient
- G = final condition cost
G(s) = transfer function of shaping filter Subscripts
H = Hamiltonian d = microscopic component
J = cost function S = final time
— L = maximum stroke of experiment max = at maximum
m_, = fourth moment of a sample of T -! N = normal
n = bandlimited white noise n = bandlimited white noise
S = power spectral density.. T = first-passage time
- s = complex frequency variable y = wall process
T = first-passage time y = Macroscopic component
t = time z = significant maxima position
1 = time at significant maximum
[ = time at zero crossing
u = experiment acceleration Introduction
x = state vector, = (x x,)7 T HE microgravity environment of space may permit
X, X, = experiment position advances in material science experiments. Such experi-
— X3 = experiment velocity ments could aid in the understanding of basic physical phe-
y = wall process nomena, quantify the limitations and effects imposed by
b4 = upper wall true position gravity, and spur application to Earth and space based
» = lower wall true position processes and products. A microgravity environment could
- Yup = upper wall constraint potentially eliminate buoyancy-driven convection, sedimen-
Fiow = lower wall constraint tation, and hydrostatic pressure as well as yield other advan.
Ymax = maximum of wall process ’ tages.'
I > = macroscopic component at y(¢) At this time, the acceleration environment requircments for
- 32 = macroscopic component velocity various experiments are not well known.? An assessment of
z = significant maximum position existing theoretical and experimental data available up to 1985
o = dirac delta function indicated acceleration levels below 10 - ¢ £o would be required
for frequencies below 0.1 Hz for many of the processes. The
g requirements at higher frequencies are somewhat lower,?
1 Work to determine the levels necessary is in progress by

various materials experiment researchers. An example is a
twin crystal growth experiment to be carried out on space-
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Acrospace Engineering. acceleration environment aboard spacecraft. NASA has
—_— tProfessor, Department of Mechanical and Aerospace Engineering. carried out a series of measurements reported at various



Table I Microgravity space experiment acceleration environment?

g/80 F, Hz Source
Quasisteady or **dc’” acceleration disturbances

10-7 Oto10-3 Aerodynamic drag

10-8 Oto 10-3 Light pressure

10-7 Oto10-3 Gravity gradient

Period acceleration disturbances

2x10-2 9 Thruster fire (orbital)

2x10-3 5-20 Crew motion

2x10-4 17 Ku band antenna

Nonperiodic acceleration disturbances

10~4 1 Thruster fire (attitude)
10-4 1 Crew push off

conferences. S A summary of this data was presented in Ref. 7
and is repeated in Table 1. Additional results have been re-
ported in Refs. 8 and 9.

The vibration levels reported in the above literature for
spacecraft are significantly greater than allowable for material
science experiments. In order to achieve accurate and repro-
ducible results in such experiments, vibration isolation wil] be
required.? Acceleration disturbances in the orbiter environ-
ment cover a wide frequency bandwidth, from 0 to 100 Hz.
Sources include spacecraft drag, light pressure oscillations,
manned activity, and thruster fire. The frequency and
amplitudes of these accelerations are summarized in Table 1.

The frequency and amplitude of any particular vibration
source determines the level of isolation that can be achieved.
At relatively high frequencies, above approximately 10 Hz,
passive vibration isolation is normally possible. Two examples
of such isolation systems are reported in Refs. 10 and 11. For
lower frequencies, active vibration isolation is necessary. One
of the few such systems is examined in Ref. 12.

A fundamental restriction on active microgravity vibration
isolation systems is the limited available volume aboard space-
crafts for experiments. This kinematic constraint cannot be
overcome through improvement of the vibration isolation
control system, sensors, or actuator. The purpose of this
paper is 1o explore the limitations on vibration isolation sys-
tems arising from the stroke restriction. Thus an ideal vibra-
tion actuator is assumed, and the problem is solved in part by
optimal control theory. This work is an extension of research
on isolation limits under sinusoidal excitation.'® In this paper,
the excitation is a wideband, zero-mean stochastic process. A
lower bound on the root-mean-square acceleration is deter-
mined in terms of the maximum stroke.

Optimal Control Formulation

While the isolation problem for microgravity space experi-
ments is multidimensional, this analysis examines the one-di-
mensional case. Consider the system illustrated in Fig. 1 with
experiment position x(¢) and wall positions y,(f) and y,(¢).
The experiment is connected to the spacecraft by umbilicals,
such as power or fluid lines, and by a vibration isolation
actuator. Although the spacecraft has a finite mass, it may be
considered to have infinite impedance for this analysis since
the spacecraft-to-experiment weight ratio is very large. The
spacecraft acts as an external base motion transmitting forces
through the umbsilical and the actuator.

An ideal actuator is assumed. Therefore, the acceleration of
the experiment is the minimum acceleration possible given that
the experiment stay between the two walls. The effects of the
power/data/cooling umbilicals represented in Fig. 1 are re-
moved through the ideal actuator. Thus, the problem is re-
duced to a kinematic representation. The vibration isolation
problem becomes an optimal control problem: find the opti-
mal trajectory (minimum acceleration) given the constraint
conditions (moving walls). This problem formulation was
used previously by the authors to find the limitations on
isolation for harmonic disturbances. '3
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Fig.1 One-degree-of-freedom isolation problem.

Yup = ¥} + L/2

POSITION

Viow = $(t) = L2

TIME
Fig.2 Optimal path through stochastic walls.

Significant Extrema
The kinematic formulation allows the stochastic problem to
be easily conceived. Figure 2 illustrates. An optimal trajectory
x(¢) is sought between two walls whose motion is described by
a single zero-mean stochastic process y(t),

Yop=y()Y+L/2

Ylow =)’(’)—L/2
where L is the maximum stroke of the experiment between the
two walls.

Let the experiment acceleration be denoted as u(u = Xx).
Then the cost function J to be minimized is

J = j u?dr m
0
with the constraint
L L
y(r)—Esx(r)sy(t)+—2—, 0=y )

for a given wall centerline motion y(¢). The optimal trajectory
will be in general smooth with as few extrema as possible. The
trajectory will also cover as little distance as possible. As pre-
viously reported in Ref. 13, with a sinusoidal disturbance, the
optimal trajectory tangents the maxima of the lower wall and
the minima of the upper wall when the amplitude of y(¢) is
greater than L /2. Given these tangencies, it is an easy task to
compute the minimum acceleration path connecting them. Al-
though this path may intersect a wall’s path, as was reported
in Ref. 13, this ““cheating’’ results in less than a 1% reduction
in root-mean-square from the true optimal path. By dropping
the inequality constraints from the optimal control problem

ORIGINAL FAuRE
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and replacing them with the tangency conditions at the wall's
extrema, a tight lower bound on the minimum root-mean-
square acceleration is obtained. Thijs js the approach taken
here with the stochastic problem. For this analysis, the wall
process y(¢) and its derivatives are assumed to be stationary,
zero-mean, Gaussian random processes.

Once again, the wall inequality constraints are ignored and
are replaced with interior point equality conditions. A
tangency condition is assumed at some of the walls’ extrema

bound. Note that a Zero crossing of x(¢) must occur at or
before y(r) leaves the + L /2 interval. However, for most
random processes y(), the additional requirement of
simultaneous zero crossing results in a realistic and tighter
lower bound. The upper wall is ignored as a constraint when
y(t) > 0 as the lower wall is when y(f) <0. Thus, only upper
wall minima when ¥(t) < 0 and lower wal] Mmaxima when y(¢)
>0 are eligible tangency condition points. Figure 3 illustrates
this geometry and a composite path connecting the prescribed
interior points. The optimal composite trajectory satisfying
these interior point equality constraints will have g root-
mean-square acceleration lower than that of the optimal

crossing points. (It will, of course, have a continuous first
derivative at the €xtrema tangent points.) It should be pointed
out that the composite trajectory is not intended to be an
implementable optimal control path; the trajectory is a
theoretical tool to investigate the limitations on vibration
isolation.

Not all eligible lower wall maxima and upper wall minima
will be tangented by the optimal composite trajectory. In
Fig. 4, note that if Iy <L/2, as shown on the left side of
the figure, the optimal path is x(t)=0. However, if the
eligible extremum Crosses zero (i.e., if 1y(s)| >L/2) as on the
right side, the optimal composite path must depart from
x(t) = 0 to avoid collision with the wall,

Because of the wideband character of the stochastic wall

A wall extremum in a time interval that requires an increase
the cost function during the interval jg classified here as a
significant extremum, (This is, admittedly, not a rigorous
definition; however it satisfies the purpose of this investi.
gation.) The optimal composite path, therefore, runs between

Yup =)+ L/2

composite
traectory

POSITION

Yiow = ¥(ti < 1s2 O tangency equality

Q zera crossing equality

R TIME
Fig. 3 Stochastic walls, interior point equality conditions, and com.
posite trajectory,
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significant extrema and y = 0. The composite path is a com-
bination of paths of the experiment at rest, departing to an
extremum, and returning from an extremum as indicated in
Fig. 4. Each of these cases can be analyzed in terms of a return

Solution in Terms of the Significant Extrema

The return path and its mean square acceleration given a
significant extremum is now found, Examine the time history
shown in Fig, 5. The optimal path during the interval (11,43)
satisfying the wall Inequality constraints over 2 much larger
interval has, in general, a Toot-mean-square acceleration
bounded below by the root-mean-square acceleration on the

Note that j(¢) can be wideband with Y({t) not.] The boundary
constraints at these two points for the return path are

x(t) =z x(t) =0
x(f) =0

where z = Ymux—L/2.

() = free 3)

—_— e departing —piq__ return
path path

path

¥(t) + Ly2 ‘

POSITION

vity=Ly2

O significant extremum

i
LXTN) compositetrajeczor)-
8 zero crossing

TIME
Fig. 4 Significant extrema and composite trajectory,

RETURN paTH

POSITION

TIME
Fig. 5 Significant maximum, return path, and boundary conditions.
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The velocity boundary condition at time £, is left free since
this condition depends on the next significant extremum, the

location of which cannot be readily derived even in a prob-
abilistic sense. Therefore, the velocity at time ¢, is unspecified

so that the return path root-mean-square acceleration will be a

lower bound on the minimum acceleration. The optimal con-
trol problem is thus reduced to that over the time ¢, to 1, with

cost function

n
J=j utde

4

1)

and the boundary conditions of Eq. (3).

This problem is solved by the calculus of variations
(Appendix A) yielding the optimal trajectory, !4

The mean-square acceleration on this trajectory is

iz

L] 2
MS(¥) = [%' J u? dtJ =7 )

(-t)

5}

where T = (£, 1)), the time from significant extrema to zero
crossing, or the first-passage time. This is the lower bound
sought. Assuming that the wall process y(r) is ergodic, the
minimum mean square experiment acceleration attainable
with an ideal isolator must be greater than the mean-square
acceleration of the composite trajectory,

3z?
)

where E£{ - ] is the exact value operator!s

322 = =352
E[F} = L f FERLASS

1)dz dT ©)

Here, f,7(-,-) is the joint probability density function on the

significant maxima z, and the time from

significant maxima to

zero crossing T. (The significant extrema problem can be
solved for in terms of significant maxima because of the
symmetry of the problem.) Equation (6) can be rewritten

372 * 1
E {F} =j L@ E [Flz} dz @)
0

where E{(1/T%Iz] is the conditional fourth moment of T-1,
and f,(-) is the probability density function of the significant -

maxima.

Distribution of Significant Maxima
Consider the stationary, zero-mean, Gaussian random
process describing the wall’s acceleration j(r). This process
can be characterized by its power spectral density S, (w).'® The
mean square of the wall acceleration is the integral of this over

Fig. 6 Probability density function for the d
a stationary Gaussian process.,

20 3o

istribution of maxima of

Al U RAL

frequency!?
E(Y=0l= J Sy(w) dw ®

(simply the area underneath the power spectral density curve).
The mean square of the velocity and position processes are

E(pY = af, = j 'Sy#z dw )
e W

EUZ)=G§=J S‘VL:O)dw (10)
e W

For a Gaussian process, the density of upcrossings of y =0 for
the y(r) process 518 is

v, = <2 (1)
- 27,
and the density of maxima of y(1)is
Oy
= 1
Hy 270, (12)

Rice' and Houston and Skopinski®® have shown that the
probability density function for the distribution of the
maxima of a stationary Gaussian random process is dependent
only oa the ratio #y/vy and the standard deviation of the
process g,

, Y/a
Srmae U79,) = (1 —yixpﬁ)%[WJ

whe (Y Ed __re
+(27) P (o,)fN[oy}FN[(uﬁ/Vﬁ— l)'/’J (13)

where fy and F,, are the normal probability density function
and its integral

Inx) = (2x)~ e -ty

Fryix) = J S(a) da (14)

(Lin? has an interesting discussion on this maxima distrj-
bution.)

The ratio #y/v, can be regarded as the average number of
maxima between upcrossings for the Y(t) process.!® Prob.
ability density functions for the distribution of maxima of a
stationary Gaussian random process are shown for different
values of this ratio in Fig. 6.

A random wall process typical of the microgravity vibration
environment will have many maxima per zero crossing
(#y7vy, » 1), Most of these maxima are clustered near the
peaks of the process and can be considered the high frequency
component.'® Figure 7 illustrates. The random process y(1),
as was shown by Crandall,'® can be decomposed into the sums
of a macroscopic component y(t) and a microscopic com.-
ponent d(r)

Y(t)=y(t) + dt (15)

The macroscopic component has a much smaller root mean
square og and greater frequency of zero crossing »4 than the
macroscopic signal (g5, ;). The macroscopic component will
have nearly the same amplitude as the original signal. The
distribution of maxima given in Eq. (13) is the distribution of
both the micromaxima and macromaxima. Clearly, the
micromaxima do not contribute (substantially) to the cost



function; therefore, they are, by definition, not significant
maxima.

The distribution of significant maxima is therefore derived
from the distribution of macromaxima, the maxima of the y(r)
process,

. y/o
Foma 0709 = (1 =53/ "f[ WTLT]
wi (PN | 2 p | 0
+ (21’)/’ My(a})fN[Uy:IF [0‘;/”%_ |)%] (]6)

To obtain the density function for the distribution of
significant maxima from the distribution of macromaxima it is
only necessary to recall Eq. (3) with ¥, replacing y,.,

Pmax—L 72 Imax>L /2

z= 17
0 Vnax<L/2

find the cumulative distribution on z in terms of the cumu-
lative distribution on .,

Fy  (z+L/2) 2>0

F(2)= (18)
0 z<0

and to differentiate with respect to z!*

Fyp L/D6@) + Sy, @+ L/2)  2>0

FACE (19)
0 z<0

where 8(-) is the dirac delta function. Note that the portion of
the ¥max distribution between — oo and L /2 maps into a dirac
delta at z = 0. The integration of this part of f,(z) in Eq. (7)
will be zero

Eo 322F, _ (L/2)8(z) E {%Iz} dz =0 20)

The nonsignificant maxima, therefore, do not increase the
expected mean square. (Note that E£{(1/T%)Iz = 0] is finite
since T is defined as the time for the y(¢) process to reach y = 0
starting from rest at y,.,. When z = 0, 9. = L /2; therefore,
T is greater than zero.) |

The tightness of the lower bound on experiment mean
square acceleration given in Eq. (7) depends on the accuracy

)I,CRONA)(\I\P:\
, W\

L die-da

2 [
'-;7 / MACROMAXTMUM
e

TIME
Fig. 7 Macroscopic maximz and microscopic maxima.

of the geometric configuration, Fig. 5, in representing typical
wall position histories. The decomposition, or smoothing, of
the y(f) process yields a macroscopic random process j(r)
upon which to base the lower bound. If the random process
J(r) has close to one maxima per upcrossing on average (it
must have at least one since it is continuous), the typical
geometric configuration will resemble Fig. 5. Thus, for a
narrowband random process 3(¢), the bound will be very tight.
(In the limit this approaches a sinusoid with slowly changing
random amplitude and phase??; the resulting bound would be
only a few percent low.) For a wideband macroscopic process
the bound will be considerably looser but non-trivial. It is
therefore desirable that the decomposition produce a macro-
scopic process with an average number of maxima per up-
crossing (u,/v;) close to one. The smoothed process j(f)
should also have nearly the same variance as the original signal
¥(t). A method for the decomposition of y(t) and d(t) will be
discussed later with the application.

First-Passage Problem

An expression for £ [(1/T*)1z} can be found explicitly if
the conditional probability density function Jr(Tlz) is
known!s

v

E{(1/THiz} =

o

1
Ffr(TIZ)dT @2n

The distribution of the first passage time of a stochastic
process T is a classical problem probability that has been
tackled with limited success by many authors.?*2? No exact
theoretical solution exists. Many approximate methods have
been used including series solution,? Poison approximation,2*
numerical probability diffusion, and Monte Carlo tech-
niques.? The particular variant of the first-passage problem
of interest here is nonstationary due to its initial conditions

J() = Pmax
y(r)y=0 (22)

and can be expected to have a crossing in the near future since
J(r) is zero mean (This, in contrast to the first passage of a
level = a » 9, which will occur extremely infrequently.) The
nonstationary, quick-crossing nature of this problem suggests
Monte Carlo simulation as the preferred method of solution.
It is not necessary to generate the conditional probability
density function of T in this manner; only the E{(1/T%)Iz] is
needed.

To perform the simulation, a forced differential equation
with the proper probabilistic characteristics must be found.
More specifically, the wall acceleration in the simulation
should have a power spectral density that matches that of the
acceleration disturbance found aboard the spacecraft in the
region where the experiment is to be located. Given a mea-
sured power spectral density, the dynamic model, or shaping
filter, that transforms Gaussian white noise to the desired
random process can be found by spectral factor-
ization.'’?® This dynamic model can then be used in Monte
Carlo simulation (Appendix B).

Application to Microgravity Vibration Isolation

The method described above is now applied to the
microgravity problem. As described in Ref. 7, vibration
aboard spacecraft is essentially of two frequency regions:
0-10-? Hz and above 1 Hz. Consequently, the power spectral
density for analysis here is modeled independently in these two
regions. The low frequency portion was not obtained irom an
experimental power spectral density since such information is
unavailable. This part of the spactral density, illustrated in
Fig. 8, has thercfore been devised for the purpose of this
example to fii the known environmenta! disturbances in this
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Fig. 9 Acceleration power spectral density in the high frequency
range.

frequency range. The spectral density of the analytical model

75.75 w*

and by Egs. (11) and (12)
v, = 0.18836582 x ~? upcrossings/s
py = 0.13153971 x 10' maxima/s
#,/v, = 6983.2 maxima/upcrossing (25)

Clearly there are many micromaxima per peak of the macro-
scopic process. The two distinct regions of the power spectral
density permit an easy decomposition of the wall processes
y{t), ¥(1), and j(¢) into macroscopic (low frequency) and
microscopic (high frequency) components. For a problem with
a continuous power spectral density, a smoothing filter as
examined by Crandall'® may be used for the decomposition.

The decomposition of the Gaussian signal yields two inde-
pendent random processes?!

E{(3(t)d0)} =0 o2 = a2+ 0}
E(1) d@)} =0 ol=0+al
E{F(1) du)} =0 =02+l 6)

with
0y, =0.16503623 x 10' m g5 = 0.63558716 X 10~* m
o5 =0.19030049 X 10-2 m/s o, = 0.44024768 x 10~ m/s

o5 = 0.25429066 x 107°* m/s* 04 =0.16143511 x 10~ ! m/s?
27)

The resulting upcrossing and maxima frequencies are
v, =0.18351888 x 103 vg = 0.11024073 x 10!
py =0.21267216 x 10~3  u, = 0.58360775 x 10-"

pp/vy = 011588571 X 10! pg/vy = 5.2939393  (28)

Sy((ﬂz) =
0

has most of its power concentrated near orbital frequency
(1.851 x 10~ * Hz, 90 min orbit) with a power corresponding
to a root-mean-square acceleration of approximately 0.2 pug.
It should be pointed out that the accuracy of the lower bounds
generated by this method depends heavily upon the model
used in this region.

The high frequency region of the power spectral density,
shown in Fig. 9, is from experiments aboard Spacelab.®® An
analytical model could easily be fitted to the curve shown;
however, this is not necessary for this application. Note that
the method of analysis described previously does not require
that disturbance spectral density occupy two separate regions
as in this case,

The mean square wall process acceleration, velocity, and
position can be found by evaluating Egs. (8-10) respectively,
This may be done through numerical quadrature yielding,

o, = 0.016143511 m/s?

0, = 0.0019532654 m/s

o, = 1.6503623 m 24)

(«/0.00116)* — 1.99 (w/0.00116)* + 1

0 < w < 0.006283
23)

0.006283 <w<3.14159

Therefore, the smoothed wall process has an average of
1.158857 maxima per upcrossing (or cycle). Since this is close
to one, the wall process geometry closely resembles Fig. 5 and
the lower bound will be tight. Further note that

o,/0, = 1.0 vy /v, = 0.97426848 (29)

Thus, the smoothed process retains nearly all of the signal’s
amplitude and has on average fewer cycles per unit time. The
apparent drop in ‘‘frequency” is due to wall process
smoothing removing spurious microcycles. Therefore, the
decomposition does not alter the original signal's significant
maxima amplitude-time characteristics. Finally, unless the
maximum stroke is of the same magnitude as the microscopic
component, the smoothed wall acceleration J(¢) establishes an
upper bound o3 on the minimum root-mean-square experi-
ment acceleration.

With the significant maxima distribution found, attention is
now turned to finding the needed first-passage time moment.
The low frequency part of the power spectral density,
Eq. (23), is converted te an equivalent dynamical system via
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spectral factorization yielding the shaping filter

8.64581
(s70.00116)? + 0.1(s/0.001160) + 1 (30)

Gyls) =

with a bandlimited white noise excitation n(f) described by

1 0 < w=0.006283

Sn(w) = (31)
0 0.006283 < w

Converting Eq. (30) into two first order differential equations
produces

Y= (32a)
Y= —1.3456 x 1059, — .16 X 10~
+1.16338 x 105 n (32b)
with initial conditions from Egs. (15) and (22)
7Oy =y, =2+ L/2
70 =0 (33)

The bandlimited white noise process n(t) is approximated
by the sum of a large number of sinusoids at nearly evenly
spaced frequencies between zero and the cutoff frequency via
the method advocated by Shinozuka and Jan.?’ The phases are
random while the amplitudes are determined by the power
spectral density desired. As the number of sinusoids is
increased, the approximated signal approaches n(f). It was
determined through testing that 40 was a sufficient number of
sinusoids for this example.

The differential equations of Eq. (32) are numerically
integrated from the initial conditions until the first crossing. If
the process rises above the initial position ¥, , the simulation is
stopped and restarted from the initial condition again. This
insures that the crossing time obtained is the first-passage time
from the maxima. The first-passage time of each simulation is
recorded, and the fourth moment of 7 - is calculated from
the collection of k first-passage times -

|IM>,

m_p,) = % T,~* (39)
For an ergodic process,'® as the sample size k& grows, this
statistic approaches E (7T ~*13,,). The statistic m_4(Jiy) is
found for a range of ) values. The results of the simulations
for the example are shown in Fig. 10. Note that the data are
asymptotic to

-V1T -\ ]* ’
wg/ tan ! —E—’ =0.26105 x 10~ 12 5-¢

as ¥, approaches infinity where w, is the damped natural
frequency of Eq. (32). This is because the noise is essentially
negligible when the system’s energy is very high. Once the
maximum stroke L is specified, the E{T - ‘|y, } yields the
E{T ~*Iz}. The data points are cubic spline mterpolated to
provide an approximation of the function E(T ~*lz) suitable
for numerical integration.

The experiment acceleration mean square lower bound
sought can now be calculated from the significant maximum
probability density and the conditional moment on the
first-passage time by numerical quadrature of Eq. (7) using
Eqgs. (16), (19), and (28) along with the interpolation of the
inverse moment data. This is done for varving values of
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Fig. 11 Lower bound on root-mean-square experiment acceleration
under prolonged exposure to specified vibration environment.

maximum stroke. The lower bound on minimum root-mean-
square experiment acceleration that can be obtained under
prolonged exposure to the example vibration environment
given the stroke constraint is thus computed and is plotted in
Fig. 11 vs maximum stroke. For example, with a maximum
stroke of 1 m, according to the figure the root-mean-square
acceleration of an experiment must be greater than 0.17 ug,
whereas if a 2-m stroke is permitted, this can be reduced to
0.13 ug. Note that the lower bound is non-zero for finite
maximum stroke. This is in contrast to the previously reported
results for harmonic disturbances where the maximum accel-
eration was zero when the maximum stroke was greater than
twice the harmonic amplitude.

Conclusions

In this paper, the microgravity vibration isolation problem
was formulated as a one-dimensional kinematic problem. The
geometry of the stochastic wall trajectories was defined in
terms of their significant extrema. An optimal control solution
for the minimum acceleration return path determined a lower
bound on experiment mean-square acceleration. This bound
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was expressed in terms of the probability density function on
the significant maxima and the conditional fourth moment of
the first passage time inverse. For an example given, the first
of these was found analytically while the second was found via
Monte Carlo simulation. The experiment root-mean-square
acceleration lower bound as a function of available space was
then determined through numerical quadrature.

The method of analysis is quite general and intuitive. The
authors feel that this could be applied to other problems with
stochastic constraints. While such an analysis does not yield a
controller, it does aid in the selection of system parameters
(for example, the maximum stroke).

Lower bound plots of the type developed here may assist
microgravity experiment designers as well as vibration
isolation engineers. The lower bound depicted in plots of this
type could not be achieved by real systems for several reasons.
The levels derived are beneath the theoretical minimums. In
addition, a real system is causal and cannot base its current
control on unknown future disturbances. Also, any real active
control system will have some non-ideal characteristics. The
sensors employed to provide feedback will have some error as
well. In spite of these comments, the authors of this paper are
optimistic about attaining microgravity isolation levels close
to the levels depicted here with an active vibration isolation
system. '

Appendix A: Solution for Optimal Trajectory

The derivation of the optimal trajectory proceeds as
follows. Define the system state variables as

X=X X =x; Xy=1Uu (Al)
and the equations of motion become
X =Ax + Bu

01

T_
0 OJ B'=[0 1] (A2)

x7 =[x x)] A =[

The cost function is adjoined by the equations of motion and

the final condition, utilizing three Lagrange multipliers.'* The
result is

i

J=ox, = \ (12 + M — %) + My(u~xy)] dr (A3)

Jiry

which is the general functional for this problem. Define the
Hamiltonian and final condition cost' as

H=u?+\x; + Nu G =ox, (A9)

Employing the calculus of variations, the minimization equa-
tions are

. aH . oH aH
)\]5'—-=0 )\ZE_*:_)\I OE—=2U+>\2(A5)
ax; ax; u
with natural boundary conditions
)\,/ = an =¢, )\2/ = G,zf =0 (A6)
Solving this gives
k] = Co, )\2 = - Cyt + C, u=Y Cy—-" C, (A7)

Imposing the prescribed and natural boundary conditions
yields

Co=—5 Ci=— (A8)
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and
u(t) =3sz z—% H
x(z)=%2,-’—zzz_%,_wfrfj;2@
x(1) = (1;23)2 e (3/;3212 o (3/2)z(+—2121.) ’
L Wz24 —T?t,tf +3t21) )

where T = (4, - 1,), the time from significant extrema to zero
crossing, or the first-passage time.

Appendix B: Shaping Filter for Simulation

The power spectral density is first approximated by a
rational polynomial in w?. (This can be done to any required
accuracy for a given power spectral density by using higher
order polynomials.) This representation of the true power
spectral density is then factored into two terms

Suw?) = GUwIG( - jw) (B1)

The first term G (fw) has all its poles and zeroes in the left half
plane, whereas the poles and zeroes of the second term,
G( - jw), are the mirror images in the right half plane
Replacing jw in G(jw) with the complex frequency variable s
yields the transfer function that produces a Gaus-
sian random process with power spectral density S(w) from
Gaussian white noise input:

white noise s
G6) ¥(s)

Itis a straightforward process to convert the transfer function,
or shaping filter, with n poles and m zeroes to n + m first
order linear differential equations with white noise input via
the inverse Laplace transform and algebraic manipulation.!7.26
(Note that the derivative of white noise is nonexistent.) For
most applications only the model of the low frequency
component y(¢) as a set of differential equations is needed to
generate the £{(1/T*)1z}.
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The limitations on vibration isolation for microgravity sp
from the restricted interior Space available for vibration iso|
one-degree-of-freedom representation of the experiment spa

»

Is assumed. The wall motion is characterized as sinusoidal
and the problem becomes one of finding the minimum 3

ace experiments are explored. These limitations result
lation and the strokes required to achieve isolation. A
cecraft system is used, and an ideal vibration actuator
At a single frequency. A kinematic representation results,
cceleration trajectory within a pair of moving walls, This

optimal control problem can be solved via the calculus of variations; however, transcendeatal equations result. To
obtain an analytic solution, the inequality constraints are dropped and initial and final conditions on the trajectory

demonstrate that isolation from low-frequency vibration requires more interior space than is available for vibration

isolation on manned space orbiters,

Nomenclature

= matrix in state dynamics

= vector in state dynamics

= amplitude of base motion

= coefficients of optimal control Uy

= force on experiment platform

= Hamiltonian

= cost function

= experiment mass

= stroke (maximum translation of experiment)
= half-period

= time

= boundary constraint exit time

= control acceleration

x = state vector, =(x, x,)7

X.X, = position of experiment platform

2 = velocity of experiment platform

= position of base

= frequency of base motion, Hz
= coefficient of optimal control y
= Lagrange multiplier

= frequency of base motion
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I. Introduction

THE use of a microgravity environment in space has the

potential for advanced materials science experiments.
Spencer' outlined the goals as 1) an understanding of basic
physical phenomena, 2) quantification of limitations and
effects imposed by gravity, and 3) application of knowledge to
Earth- and space-based processes or products. A microgravity
environment can potentially eliminate buoyancy-driven con-
vection, sedimentation, and hydrostatic pressure, and it can
have several other advantages.'
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At this point in time, the actual acceleration requirements
for various experiments are not well known.? An assessment
of existing theoretical and experimental data available up to
1985 was carried out in Ref. 3. Results indicate that accelera-
tion levels below 10-%g, at frequencies below 0.] Hz are
required by many processes, but the Trequirements are some-
what relaxed at higher frequencies. Work to better determine
the levels needed is in progress. An example is a twin-crystal
growth experiment to be carried out on spacecraft.*

An essential part of the development of a microgravity
experiment program is the characterization of the low-acceler-
ation environment aboard manned space orbiters. NASA has
carried out a series of measurements reported at various
conferences.¢ A summary of these data was presented by
Grodsinsky and Brown’ and is repeated in Table I. Addi-
tional data on the Space Transportation System was pre.
sented in Ref. 8. Similar results have been reported by the
European Space Agency.®

Vibration leveis reported in the aforementioned literature
for spacecraft are significantly higher than allowable for mate-
rials science experiments. In order to achieve accurate and
reproducible results in such experiments, vibration isolation
will be required.’ Acceleration disturbances in the orbiter
environment cover a wide frequency bandwidth, from dc to
100 Hz. Sources below 10-? Hz include drag, light pressure
oscillations, tidal effects, and gravity gradients. Above this
frequency, sources include manned activity, thruster firing,
and orbiter flight systems. The frequencies and amplitudes of
these accelerations are summarized in Table 1. Low-l‘requency
(107 to 1072 Hz) structural excitations likely to be present
on the space station are not represented in this data. Such
flexible structure modes will contribute significantly to the
vibration environment.

The capability of isolating the experiment from any particu-
lar vibration source is dependent on both frequency and
amplitude. At relatively high frequencies, above about 5 Hz,
passive vibration isolation is normally possible. Examples
include the Hubble space telescope reaction wheei isolation
system'® and viscous dampers for reduced jitter.'' One of the
fevs active vibration isolation systems is reported in Ref. 12,
The volume available in spacecraft for experiments is limited.
Therefore, this introduces an additional constraint on active
iso ation systems.

PREGEDING FAGE BLANK NOT FILMED
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Table 1 Microgravity space experiment
acceleration environment (from Ref. D

£/80 F, Hz Source

Quasisteady or dc acceleration disturbances

10-7 0-10-3 Aerodynamic drag

10-8 0-10-3 Light pressure

10-7 0-10-3 Gravity gradient
Periodic acceleration disturbances

2x10-2 9 Thruster fire (orbital)

2x10-3 5-20 Crew motion

2x10-4 17 Ku-band antenna

Nonperiodic acceleration disturbances

10-4 ] Thruster fire (attitude)
10-4 i Crew pushoff

erment [
358 1 )

Lzl+ly
u=F/m

Fig. 1 Kinematic representation of the experiment spacecraft system.

The purpose of this paper is to explore the limitations on
vibration isolation for space experiments, rather than to de-
velop the actual control algorithm. Thus, the ideal vibration
actuator is assumed, and an optimal control is formulated.
The optimal control problem is solved for a sinusoidal excita-
tion to obtain the minimum acceleration trajectory. A subop-
timal solution that gives results close to optimal is also
explored.

II. Kinematic Formulation

For this analysis, a one-dimensional theory is developed.
Clearly, the actual system required will be multidimensional
so this work is preliminary in nature. Consider a one-degree-
of-freedom system, the experiment, as illustrated in Fig. 1
with position x(¢). It is connected to the spacecraft by umbil-
icals, such as power or fluid lines, and by a vibration isolation
actuator. A similar geometry is discussed by Genkin et al.,'?
with stiffness and damping as well as an active vibration
isolation actuator. However, that system has one side fixed to
the ground and the forced mass in motion. Although the
spacecraft actually has a finite mass, it may be considered to
have infinite impedance for this analysis since the spacecraft-
to-experiment weight ratio is very large. Thus, the spacecraft
acts as an external base motion y(r) transmitting forces
through the umbilicals and the actuator.

This representation reduces the problem to a kinematic
one. Onboard the spacecraft, available interior space for the
experiment is limited. The walls around the experiment, which
should not be contacted, constrain the maximum translation
of the experiment, or stroke, to a fixed distance L. The base
motion y(1) imposed on the walls, spaced to permit a stroke of
L, forms the problem constraints. The problem of vibration

isolation/attenuation becomes one of finding the optimal tra-
Jectory (minimum acceleration) given the constraint condi-
tions (moving walls).

HI. Optimal Control Formulation

The objective is to formulate and solve the optimal control
problem for minimum experiment acceleration trajectory
in time. Let the experiment acceleration be denoted as u
(u = F,/m). Then the cost function J to be minimized is

J= f W ds M
0
with the constraint

W) —Lsx(gsyn, 0s<i¢ (2)

for a given base motion y(¢).
This problem is examined for harmonic base motion at a
single frequency. Let (1) have the form

A1) = A[1 - cos(w1)] 3

with the half-period T = n/w. The cost function J now sim-
plifies to

T
J=L u?dt (4)

due to the periodicity of the problem. Also, the constraint
becomes

0<t<T
&)

All—cos(re/T))— L < x(£) < A1 —cos(nt/T)]

over the half-period.

This problem may be viewed as finding the optimal path
through sinusoidally oscillating walls, as illustrated in Fig. 2.
If the base travel 24 is smaller than the space L, the minimum
acceleration is zero and the problem trivial. However, if the
base travel 24 is larger than the space available for vibration
isolation L, then the optimization problem has active inequal-
ity constraints on the state variables. The solution to this
problem may be attempted using the calculus-of-variations
approach by adjoining the Hamiltonian with a second-order
state-variable inequality constraint. This method requires the
satisfaction of two interior boundary conditions (position and
velocity continuity) at the junction points of constrained and
unconstrained path arcs.'* Because the wall motion is sinu-
soidal, these tangency constraints require the solution of
several transcendental equations. Therefore, no closed-form
solution to the general problem is available. As will be shown,
under a certain condition the problem can be solved to yield
an analytic solution. When this condition does not hold, a
suboptimal solution may be employed. Thus, casy-to-use
equations and plots for determining vibration isolation limits
are made available to microgravity experiment designers.

IV. Analytic Solution

To obtain an analytic solution to the problem, the con-
straints are simplified to the boundary conditions

x(0) =0,
x(0)=0,

X(T)=24~L20
XT)=0 (6)

which an optimal solution clearly must satisfy.
Define the system state variables's as

X, =X, X, = X5, Xy =u (W)
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Fig. 2 Optimal path through harmonic walls,

and the equations of motion become

X=Ax + Bu

P A=[3 (')] BT=[0 1 (g

The cost function is adjoined by the constraint, Eq. (7),
using two Lagrange multipliers.'s The result is

T
J=J‘ [u2+l|(X2—x.|)+llz(“—22)] dr (9)
0

which is the general functional for this problem.
Define the Hamiltonian as

H=u’+2x,+ A,u (10)

If we employ the calculus of variations, the minimization
equations are

O=—=2u+4, (11

Solving these gives

A= —cot + ¢
u=icgt — e, (12)
Imposing the boundary conditions of Eq. (6) yields
Co=—24(24 - L)/T?

€ =-12(24 - L)/T? (13)
and
—-12(24 - L 24 - L
u(’)opl=#' +6(T\2)
. —6(24 - L) 6(24 - L)
X(l)=TIZ+?t

x(,)=;2($‘_),3+w,2 (14)

TZ
24-L 20

(Of course, if 24 — L <0, the optimal trajectory is clearly
#u=0,%=0,x=0) The root-mean-square (rms) acceleration
of this trajectory is

2 —
ms('f°91)=<7l,fru’d;>” =£2(;::\L) s

The trajectory of Eq. (10) is the solution to the original
problem if the inequality constraints on the platform position,
Eq. (5), are satisfied. Note that Eq. (14) is a linear open-loop
control law.

V. Conditions on the Analytic Solution

The condition under which Eq. (14) satisfies the inequality
constraints can be obtained by expanding Eq.(5) asa Taylor

series
w1y = A[l - cos("?l)]

2 4
A o

If we combine Egs. (5), (14), and (16), x(1) < (1) becomes

2 k) 2 2 4
3(24 —L)(;’.) ~2(24 —L)(%_) s"T"G) "%(%)“*"'

(1m
For small ¢/T,
3(2;4 — L)< 4An?2
which yields the condition
L z[2-(n¥6))4 (18)

The symmetry of the optimal trajectory and inequality con-
straints guarantees that this is also the sufficient condition for
Eq. (14) to satisfy the inequality constraint near the final
time.

VI. Suboptimal Solution

A suboptimal solution to Eq. (4) that automatically sa-
tisfies the inequality constraints of Eq. (5) is

Taun() = (4 — L)1 —cos(a/T)), 241> 0 (19)
which has control history

Uy = (A — L/2)(m*[T?) cos(nt/T) (20)



and rms acceleration
ms(X,,) = (/2/4)n%(24 — L)/T?) (21

When Egs. (15) and (21) are compared, it is clear that the
suboptimal solution is only slightly inferior to the optimal

[FMS(¥opn) frms(E,us)] = (4/6/7%) 2 0.9927 (22)

A comparison of the optimal and suboptimal accelerations
and trajectories when condition (18) holds is shown in Fig. 3.
The optimal solution when condition (18) is invalid is a
combination of a linear control law and wall following trajec-
tories,

(Ar3/T?) cos(nt/T), 0<tr<¢*
Ugpe, (1) = a —2at/T, t*<t<T—1¢* (23)
(An¥T? cos(nt/T), T—1*<t<T
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where ¢* and « are determined by the solution of several
transcendental equations expressing position and velocity
continuity at ¢*. It is clear that the rms of this optimal
solution must be bounded between that of the suboptimal and
the optimal with the inequality constraints of (5) dropped

(\/E) (—“—ZA ) < rmS(lloplz) < (ﬁ nz) ('——ZA —0

T? 4 Tt

(4-1L) (24 - L)

34641 "= < rms(u 7 (24)

) < 3.4895

opty

The suboptimal solution can obviously be employed as an
excellent approximation to the optimal, Eq. (23), when condi-
tion (18) is not satisfied.

VII. Limitations on Isolation

The primary purpose of this paper is to determine theoreti-
cal limits to vibration isolation. Although a dimensionless
plot could have been produced, it was felt that a few typical
dimensional plots would be of more use to designers of
microgravity matenials science experiments. Figures 4-6
present the curves of the minimum experiment acceleration vs
base acceleration at constant frequencies for stroke limits of
5, 10, and 20 cm, respectively.

The horizontal axis gives the rms base acceleration calcu-
lated from

rms( §) = (/2/2)w?4 (29)

The vertical axis is the minimum experiment acceleration
from Eq. (15) when Eq. (18) holds and Eq. (21) when it
does not.

In Figs. 4-6, the minimum experiment rms acceleration at
any given frequency is zero (isolation) until the base displace-
ment amplitude equals one-half the maximum stroke possible.
The minimum experiment rms then quickly rises with in-
creases in base acceleration and asymptotically approaches
the zero-vibration-reduction line, at 45 deg. Along this line,
the base and experiment act as if they were rigidly coupled
together and have the same acceleration.

The primary limitation is the length of stroke allowed
between the experiment and the base. As an example calcula-
tion, consider an rms base acceleration of 1 x 10~2g, at a
frequency of 0.06 Hz. The base travel is given by

24 = 2./2[rms( j)/w?) (26)

-
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which has the numerical value of 19.5cm for this example.
For a stroke L =S5cm, Fig. 4 shows that the experiment
acceleration will be at least 7 x 10=* g,. When the stroke is
increased to L = 10 cm, Fig. § gives a value of 4.5 x 10-4 g, .

The last case is a stroke of L = 20 cm. Figure 6 indicates
that the minimum acceleration is zero. In this case, L > 24 so
the stroke is large enough to accommodate the full sinusocidal
motion without wall contact.

As an alternative to the plots, Eqgs. (15), (18), (21), and (25)
may be used directly. These can be simplified for this

purpose to
( L L n?
- = < = —=
(' 2,4)’ <34 <(' 12)

ms(s) { 4./6/ L a?\ L
ms(5) 7("5})’ ("B)<§7<' @n

with
24 =[2,/2ms(j) /0

VIII. Conclusions

This paper has developed a kinematic formulation for the
microgravity space experiment problem in one dimension.
Further, two solutions, one optimal and the other suboptimal
but very close to optimal, have been obtained. These permit
plots of vibration attenuation for given levels of available
space. For the sinusoidal oscillation assumed here, the experi-
ment could be completely isolated if sufficient space were
available. Unfortunately, the low-frequency motions (0-
0.01 Hz) would require motions with a length much larger
than possible aboard spacecraft.

Plots of the type developed here are intended to assist
microgravity experiment designers as well as vibration isola-
tion engineers. These plots represent the ideal vibration isola-
tor. Real systems will not be able to attain the ideal for
several reasons. The actual motion will have several frequency

components as well as a random component. The random
component alone will ensure that the full space L cannot be
employed. Some safety space will have to be allocated to
prevent occasional wall contact, Any real active control sys-
tem will have some nonideal characteristics. The sensors
employed in the active control feedback loop will have some
errors as well. The authors of this paper are aware that the
development of a very low-frequency accelerometer is
difficult. In spite of this, we are optimistic about the levels of
vibration isolation discussed here. It seems reasonable to
believe that approximately 75% of ideal isolation is possible
with an actual control system and actuator.
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mega—Gauss—Oersted). This design was not only large and heavy, but could not be built from
a single piece since magnet manufacturers do not make sizes larger than 2 inches. The cost
and difficulty of assembly ruled out an actuator using multiple magnet segments. It therefore
became necessary to design the Lorentz actuator using a smaller core gap than is conventionally
used. Usually this gap is large to reduce magnetic flux leakage across it so as to yield an
actuator that will produce a force independent of coil position. It was hypothesized that this
leakage could be substantially reduced by saturating the actuator’s core. This could only be
verified, short of building a prototype, via finite element analysis. A commercially available

finite element analysis package, MAGGIE,

Figure 1: Large—stroke Lorentz actuator
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was used to "test" a large number of designs. The final actuator, shown in Figure 1, has an

outer diameter of 1.95 inches and a 4 inch length. This actuator has the following features [1]:

*

*

Long Stroke: The actuator has two inches of stroke.

Position Independence: Over the entire stroke, the actuator’s gain is almost
independent of position. For a constant coil current, this means that the actuator
force is the same irrespective of the axial position of the coil. This is achieved by the
design since the maximum flux density across the core gap is only 7% of the maximum
flux density across the pole face gap.

Current Linearity: The average flux density in the effective air gap remains constant
with variations in the coil current between the upper and lower limits. This is achieved
through the large reluctance of the permanent magnet in the electromagnetic flux circuit
and the saturation of the core.

Force: A maximum force of 1.50 Ibs is produced by this actuator with a coil current of
2.5 A.

Materials: The permanent magnet is neodymium iron boron, which has a very high
maximum energy density product of 35 MGOe. The circuit material is a high
permeability nickel—iron alloy that saturates at 1.50 Tesla. These materials permit a
compact design. ‘

The experimental results have confirmed the soundness of the design approach [1].

Figure 2a shows the actuator force plotted versus position for a number of values of coil

current. Note that the actuator’s force is fairly independent of the coil position over the

- actuator’s operating range (0.5 to 2.5 inches). Note also that the actual forces are larger than

the predicted forces, but still within 20%. Figure 2b shows the same data in terms of actuator

force plotted versus coil current for different positions. As shown in the figure, the actuator has

a high degree of linearity with respect to current. Note that the actuator gain (slope of the line

in Figure 2b) is fairly independent of coil position and is approximately 0.6 1bf/amp.
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Figure 2: Actuator force vs. current.



3.  MULTIPLE DEGREE OF FREEDOM ACTUATOR DESIGN

3.1 Introduction

The University of Virginia also examined the design of multiple—degree—of—freedom
actuators for microgravity vibration isolation. The fundamental constraint on isolation
performance to be considered during actuator design is the available working envelope [2,3].
The implications of this constraint on active isolation were examined by the University in two
journal publications [2,3].

Figure 3 shows the relationship between the envelope (peak—to—peak displacement and

frequency for several sustainable RMS acceleration levels [4]. The graph is for a
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Figure 3: Peak—to—peak displacement vs. frequency

one—degree—of—freedom case and assumes sinusoidal vibrations, but the relationships are
acceptable for order of magnitude estimates even if these assumptions are relaxed. No
definitive specification of the required isolation levels or frequency range exists. The proposed
US Space Station usable specification is also shown in Figure 3. It is claimed that vibrations

below this curve will not adversely affect microgravity experiments. The design examined in
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this section is an active isolation system with a "reasonable" envelope of 4 inches of travel
and a sustained 1 ug RMS residual acceleration. It can be seen from the figure that this will
offer isolation down to 0.002 Hz. The ampiitude to which vibrations can be attenuated is
constrained only by controller design and available instrumentation. Operation at lower
frequencies, however, requires a larger envelope, which becomes prohibitive in terms of
available spacecraft space. Another specification for the six—degree—of—freedom system
considered is a rotational range of 40 degrees.

A redundant coarse—fine scheme with magnetic suspension was chosen. This design is
particularly attractive for microgravity applications since it allows the use of magnetic
suspension while overcoming range—of—motion limitations. The design uses a Stewart
platform for the coarse stage and a novel magnetic bearing for the fine stage [4,5]. The
approximate regions of activity in the frequency—displacement plane of these two devices are
also shown in Figure 3. Both stages act to attenuate spacecraft vibrations, effectively
reducing vibration amplitudes below their active regions on the displacement vs. frequency
plane. As an example, it can be seen in the figure that a vibration of the spacecraft with 10
inches of displacement at a frequency of 1 Hz falls outside the active region and could only be
partially attenuated. It should be noted that such a large vibration is unlikely. If the
displacement was only 1 inch, howevér, the coarse stage would absorb all of it except about
0.005 inches, and the remainder would be reduced down to the micro—g level by the fine stage.

The combination of the Stewart platform and a magnetic bearing allows continuous
isolation at frequencies above 0.002 Hz, and a compact, reliable package suitable for the
application. These choices and some preliminary design concepts are discussed below in detail

after a survey of other candidate designs.

3.2  Survey of Published Designs

Several designs for 6 DOF levitation are discussed in the literature. While these designs

do not have the envelope of the proposed coarse—fine design, they might be suitable if a
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coarse stage is not required. They also deserve examination as alternative designs for the fine

stage. A comparison of the specifications for these designs is given in Table 1.

Group Trans.| Rot. [Force Envelope Mass | Actuator Sensor

Honeywell| 5 mm | +1.6° | 43 N | 27x34x50cm |36kg |Mag. Brng.|Eddy & Flux

.04 N®|100x100x100cm?| 2

N. Vales | +5 mm | <+.2 Lorentz Capacitive
NASA +4 mm | +3° © 445 N | 30x30x15cn® ? |Mag. Brng.|Eddy
SatCon +10 mm | +8° ¢ 4 N 40x40x12cm® 4.9kg|Lorentz Eddy
IBM +5 mn | +4 32 N | 25x25x15cm® ? |Lorentz |Optical

Toshiba | +2 mm | +1.5° | 20 N®| 25x25x20cm | 8kg |Mag. Brng. |Eddy

a Requirement, not limitation
Includes experiment package
€ Estimated by authors

Table 1: Comparison of Published Designs

Four designs specifically for microgravity isolation have been published. Honeywell has
a well-developed system called FEAMIS [6] with which they have demonstrated impressive
isolation performance. The system is designed for the Space Shuttle experiment configuration.
The University College of North Wales also has a well-developed system [7] designed for the
European Space Agency experiment configuration. NASA [8] has a well—tested laboratory
system and has done testing in a weightless environment aboard an aircraft in a parabolic
trajectory. They also have demonstrated impressive isolation performance for a feedforward
control system. SatCon [9] also has a laboratory magnetic suspension system.

Two actuator designs were developed for different applications, but they are mentioned
here because they are similar and could be easily adapted to the isolation application. IBM

[10] has a laboratory levitated robot "wrist" which enhances robot accuracy and performance.
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Toshiba [11] has a satellite antenna pointing system which is fully developc.. Both devices
have demonstrated positional accuracies on the order of 1 pm.

Isolation of vibrations with large amplitudes — typically occurring at low frequencies —
requires a large translational range. SatCon’s system has the largest range, but there is a
significant tradeoff with the device’s force capability. A coarse—fine approach would allow both
a large range, provided by the coarse stage, and a high force capability, since the levitation
gaps are small. There is no available data on the rotational range requirements of the
application. Isolation with an umbilical disturbance may require a high force capability, as is
offered by the systems from Honeywell, NASA, IBM, and Toshiba. Volume and weight should
be minimized in any spacecraft. SatCon’s, IBM’s, and Toshiba’s systems offer advantages in
envelope volume and weight.

The choice of the actuator technology between Lorentz force and magnetic bearings for
MDOF isolation systems is not a clear one. Lorentz actuators offer lincarity, simplicity,
open loop neutral stability, and compactness. Magnetic bearings offer higher force capability
and lower power consumption, particularly if gaps are minimized.

Four position sensor technologies offer promising performance. Eddy current position
probes are simple and robust, but bulky and heavy for large gaps. Capacitive sensors are
simple and lightweight, but can be noiéy in unconstrained environments. Optical lateral effect
photo—diodes are compact and quiet, but they require substantial supporting electronics. Hall
effect flux sensors can be used with magnetic bearing designs both to linearize the control

problem and to measure position.

3.3 Coarse Stage

The Stewart platform is a six degree—of—freedom parallel manipulator which has been
used extensively in aircraft cockpit simulator applications. Figure 4 shows the mechanism in
the proposed configuration [4]. Six linear actuators (legs) connect a base (bottom) to a

platform (top). The base would be mounted in the spacecraft and move with it, while the
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platform would track an inertial reference frame. Stepper motor driven ball lead—screws are

proposed as actuators.

Figure 4: Coarse stage isolation actuator

This mechanism was chosen over other candidates such as a carriage/gimbal assembly,
or a serial linkage mechanism, because it has the following features:

* TInherent rigidity: The parallel connection of the actuators gives the mechanism rigidity
on the order of the extensional rigidity of the actuators. For the proposcd actuators, this
will allow controller design to ignore the dynamics of the mechanism. The effects of
"umbilical” connection to the platform will also be negligible.

* Determinate inverse kinematics: The actuator lengths required to achicve a prescribed
orientation are found directly from a coordinate transformation from the base to the
platform frame. This is seldom the case for a serial linkage. This will also simplify

control.
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* Compactness: The configuration proposed here places the fine stage on top of the
platform for convenience in testing. A fully developed implementation could locate the
fine system and microgravity experiment in the space between the base and platform,

resulting in a compact package.

The Stewart platform has some disadvantages that must be considered. It is nonlinear in its
response to actuator lengths, its general direct kinematics have not been discovered in closed
form, and it has singularities in its operational space. The first two problems can be overcome
with digital controls. The singularities, which are points or loci where the mechanism gains a
degree of freedom and the actuators can lose control of the platform, must be addressed by the
design.

A simulation code has been written to allow exploration of the design alternatives.
Results indicate that our specification (4 inches translation, 40 degrees rotation) will be
achievable with actuators 10.5 inches long in the retracted position, and with 9 inches of stroke.
The simulations have confirmed that singularities are safely outside the working envelope.
Commercial actuators with the required range, load capacity, speed and acceleration have been

identified.

3.4 Fine Stage

The magnetic bearing proposed has two parts: a stator which is attached to the Stewart
platform, and a surrounding "flotor" to which the experiment is attached. The proposed stator
[5] is illustrated in Figure 5. It has twelve pole pieces and coils arranged around the surface of
a cube. The cube and pole pieces are ferromagnetic. Each pair of pole pieces and the region of
the cube to which they are attached comprise a typical "horseshoe" electromagnet causing an
attractive force toward the nearby flotor. Magnetic flux through the center of the cube causes

an imbalance in the flux levels of a pair of pole pieces, resulting in a net torque on the flotor.
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Figure 5: Fine stage isolation stator

Figure 6: Fine stage isolation flotor
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In the proposed design differential Hall effect sensors are located in the base of each pole
piece to measure the local flux. All electrical connections will be to the stator.

The flotor concept is illustrated in Figure 6. Three ferromagnetic bands are rigidly
attached to each other, but form independent flux paths. The bands are thicker in the region
near the pole pieces to avoid saturation. Flux which passes through the center of the cube is
returned through the remaining portions of the bands.

Four mounting posts are attached to corners of the cube, and pass through clearances in
the flotor. These posts could carry cooling fluid to be circulated through the stator if it is
required.

This configuration was chosen over other suspension approaches such as Lorentz
actuators or magnetic actuators located on the periphery of the experiment package because it
has the following advantages:

* Compactness: The high force capability of the magnetic bearing relative to a Lorentz
actuator of similar size and power consumption suits the application. Testing in earth
gravity will be facilitated, and suspension during launch to protect sensitive
instrumentation may be feasible. Also, the rigid structure required to mount actuators
around the periphery is avoided.

* Force/torque balance and rotational range: Actuators capable of the required forces
mounted on the periphery of the experiment are capable of torques far greater than is
required, and they limit the rotational range of the experiment. The proposed design
approach brings the relative force/torque magnitudes closer to the requirement, and
allows substantial rotational range.

* Integral sensor capability: Compact semiconductor magnetic flux sensors (Hall effect or
magneto—resistive) can be utilized both to stabilize the system and to infer relative

position. No elegant integrated approach is known for Lorentz actuators.
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3.5 Predicted Performance

The specific design examined at the University has a center cube of 2 in. on a side, pole
faces of 1 x .5 in., and pole length of 2 in. Maximum current is determined by allowing a coil
current density of 5000 amp/in? which is known to be conservative from previous designs. The
gap in the centered position was chosen to be .125 in. plus an allowance of .030 in. for inclusion
of flux sensors and a protective layer on the inside of the bands. The resulting performance of
the design is presented in Table 2. The 53 N force is a continuous worst case, with the stator
moved away from the flotor in the direction of the force. The continuous force capability in the
centered position is 175 N. Intermittent force capability is limited only by the current
capability of the amplifiers, and the saturation limit of the magnetic material used. Using
Vanadium Permandur with this design would enable 1000 N force before saturation. Of

the 4.5 kg mass, the flotor comprises only 1.2 kg.

Trans. Rot. Force Envelope Mass

[o}

+3.2 mm +7 53 N 15x15x15 cm| 4.5 kg

Table 2: Specification of UVA Design

When compared with the designs presented in Table 1, the UVA design has several
advantages. The envelope is substantially smaller than any of the previous designs, while the
performance is similar. In addition to saving space, this compactness allows the flotor to be
naturally rigid, and thus avoids control problems with structural dynamics. The design is

lighter than other designs for which data were available [5,6].
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4 CONTROL SYSTEM DESIGN ISSUES

4.1 Introduction

The control issues of active microgravity vibration isolation were another area of
investigation at the University. The thrust of this research has been the design of
feedback /feedforward controllers using modern control synthesis. As part of this investigation
we also examined passive vibration isolation analogies. In addition, a control architecture for
the six—degree—of—freedom actuator discussed in the last section was proposed.

Active isolation systems for microgravity and pointing applications have been designed
and constructed by many investigators. These systems generally use conventional PD control
of a noncontacting actuator, either Lorentz or electromagnetic, to achieve low frequency
disturbance attenuation. While an actual microgravity experiment may require umbilicals, the
isolation systems designed and tested so far cannot provide isolation for such an
experiment. These systems achieve their performance by the very low stiffness made possible
by low gain feedback of the relative position of the experiment to the experiment rack.
Without an umbilical, this stiffness may be set by the designer at will. However, when an
umbilical is present, the umbilical stiffness presents a lower bound on achievable stiffness unless
the feedback loop is used to introduce a negative stiffness. The University has concentrated its
work on the design of control systems for the generic (i.e. with umbilical) microgravity isolation
problem. The University has set the following specifications for an active microgravity
isolation system [12]:

(1) Unity transmissibility from D.C. to 0.001 Hz so as to prevent the experiment from
impacting its enclosure’s walls.

(2) At least 40 dB attenuation above 0.1 Hz.

(3) Both stability and performance robustness with respect to changes in umbilical
experiment properties, non—collocation or misalignment of sensors and actuators,
center—of—mass uncertainties, and unmodeled cross coupling between the degrees of

freedom.
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Robustness refers to the ability of the control system to perform satisfactorily when the
true plant varies from the nominal plant. Performance requirements of the type (2) for
rotational degrees of freedom have not yet been specified by NASA or microgravity users, to

our knowledge.

4.2 Passive Isolation: An Analogy

The design of an active vibration isolation system for microgravity space experiments
was examined from an analogy to passive isolators [12]. It should be noted that the primary
reason for pursuing an active rather than a passive system is not the increased flexibility in
loop shaping accompanying active control, but the limitations of passive isolation systems. The
stiffness of the umbilical precludes achieving a soft enough support so as to meet the isolation
requirements for indirect (transmitted through the umbilical) disturbances. Also, a passive
isolation system cannot isolate the payload from both indirect and direct (onboard the
experiment) disturbances. An active system allows these limitations to be overcome. For
example, an active system permits the insertion of a negative stiffness spring in parallel with
the umbilical. Note, however, that this approach, i.e. lowering the stiffness, requires the near
cancellation of the umbilical’s stiffness with that introduced via feedback. If the negative
stiffness exceeds that of the umbilical; the equivalent stiffness of the system will be negative
and the system will be unstable. It is not surprising then that the introduction of negative
stiffness via the controller has no robustness whatsoever. A focus on equivalent stiffness in
jsolation system design thus leads to control systems which sacrifice robustness for
performance. In addition, a design which achieves isolation through lowering the system
stiffness cannot attenuate direct disturbances over the same frequency band.

From a vibration engineering viewpoint, an alternative means of achieving rejection of
disturbances is to fasten the experiment rigidly to an inertial structure. While there is no such
structure in space, it is possible to achieve this effect by high gain feedback on inertial

experiment position. This inertial position feedback acts like a very stiff spring tying the
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experiment to inertial space. While such a controller may meet the 0.1 Hz 40 dB specification,
it will not satisfy the specification on unit transmissibility [12]. If an inertial position
feedforward loop is added, this problem can be eliminated. However, this method would be
difficult to use effectively for multiple-degree—of—freedom isolation.

Another method of fastening the experiment to inertial space examined by the
University is the use of inertial damping via feedback. By feeding back the incrtial experiment
velocity with a high gain it was shown for an example problem that it is almost possible to
achieve both the 40 dB and the unity transmissibility specifications without resorting to
feedforward. Unfortunately, the roll—off rate is approximately 20 dB/decade, so that both
specifications can not be simultaneously achieved [12].

Another passive analogy examined was the lowering of the natural [requency of the
umbilical by increasing the experiment mass. An increased experiment mass would attenuate
direct disturbances as well as those transmitted through the umbilical. In addition, at
frequencies below the natural frequency of the umbilical-mass system, the isolation system
would have unity transmissibility. Of course, for space applications any additional mass is
very costly. To lower the natural frequency by an order of magnitude would require increasing
the experiment mass by a factor of one hundred. Clearly, it is not practical to accomplish
increased isolation through the additidn of teal mass. However, it is possible to increase the
effective mass of the system through feedback [12].

To summarize, the passive isolation analogies examined yield some insight but they fall
short as design approaches on three counts: (1) they do not have flexibility to shape the
response so as to achieve the performance requirements, (2) they cannot be easily generalized to
multi—degree—of—freedom problems, and (3) they completely ignore the robustness problems
inherent with active control systems.

4.3 Classical Control Design

A one—dimensional isolation problem, shown in Figure 7, was examined using a classical

controls loop—shaping approach, to gain insight into controller design and limitations. System
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Figure 7: One—dimensional isolation problem

parameters were chosen to be representative values which yielded a low natural frequency

(k/m = 0.1, w % 0.05 Hz [0.316 rad/sec]), and damping was assumed light ({ = 0.1). In the

following discussion the variables d, x, and u represent experiment rack position, payload

position, and control force, respectively; and it is assumed that the only available measurement
is payload acceleration. The problem ié.to design a feedback controller, satisfying the following
specifications:

1. Above 0.1 Hz the payload acceleration X(t) should be 40 dB below the spacecraft
acceleration d(t).

2. Below 0.001 Hz the payload vibration x(t) should track the spacecraft vibration d(t) to
within 10 percent, in order to prevent collision of the payload with the walls of the
experiment rack surrounding it.

3. The payload should track perfectly the DC motion of the spacecraft, where no relative

motion can be tolerated.
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4. The loop gain of the system (plant and controller) should be less than 0.1 above 200 Hz,
to avoid controller excitation of spacecraft— or payload flexible modes.

5. The payload acceleration should be less than or equal to 1.1 times the spacecraft
acceleration at all frequencies.

6. Large phase margins should be attempted at all crossover frequencies.
The system equation of motion is

mx + cx +kx=cd +kd —u
and the system transfer functions are

cs+k —32

$2X(s) = |—5——| 5°D(s) + |—5——|U(s)
ms“+cs+k ms“+cs+k

with a system block diagram as shown in Figure 8. R(s) represents the input disturbance (rack
acceleration, Laplace domain), C(s) represents the payload acceleration, Hl(s) represents the

2
—S5

controller, and U(s) represents the control force. G(s) and m—k—-G(s) are the two plant

transfer functions, and H(s) is defined as indicated in Figure 8 for convenience.

G(s)
s°D(s) cs+k s2X(s)
R(s) u msitcstk C(s)
+ ‘

? |< U(s)
cs+k H,(s)

H(s)

A4

Figure 8: One—dimensional isolation system block diagram
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The first five specifications can now be re—expressed, respectively, in the following form:

C(s)

< 0.01 above 0.1 Hz (0.628 rad/sec).
R(s)

C(s) 3

i(s)

0.9< <1.1below 0.001 Hz (6.28-10 * rad/sec).

C(s)
R(s)

lim =1.

s-0

|H(s) G(s)| < 0.1 above 200 Hz (1256 rad/sec).

C(s)
R(s)

< 1.1 for all frequencies.

In order to use the classical approach efficiently, the above specifications must be

reduced to loop—gain form. This reduction yields, respectively, the following:

1.

G < 0.01 above 0.628 rad/sec, which in turn requires roughly that |H| > 22
1+HG
(i.e., greater than 100/G1) at that point.
The second specification, 0.9 <~ G < 1.1 below 6.28-10_'3 rad/sec, is roughly
1+HG
equivalent (since |G| % 1 below w ) to the requirement that |HG| < 0.1 below
6.28-10° rad/sec.
lim |HG| = 0.
s-+0

|HG| < 0.1 above 1256 rad/sec (same form as before).
|HG| > 7 in the vicinity of w_(where |G| » 6.5) to reduce the transmissibility to about
unity in that region.

Standard loopshaping methods can now be used in a straightforward manner. See

Figure 9 for asymptotic Bode—x plots of the specifications and of G(s); and for "first—pass"

plots of the loop gain "L(s)" [i.e., H(s)G(s)] and of the controller H,(s).
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Figure 9: Asymptotic Bode—a plot of plant G(s) and "first—pass" loop gain L(s)

The controller developed first led to a transmissibility resonance at wy (not shown) so a filter of

2
form &% 0.316)" a5 added, resulting in the following controller:
s°+0.1

1.2.10° (s+025)(s+12)(s+0316)2(s2+0063s+OJ
(s + 0.009) (s +1)Z (s +4)° (s? + 0.1)

Hy(s) =

Figures 10a,b,c represent loop gain, controller, and transmissibility plots, respectively. The
control meets all specifications except for the goal of no more than a transmissibility of 1.1 at
all frequencies; and this specification is almost met. The two phase margins associated with the

above controller are 599 and 889, respectively.
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From the above analysis the following conclusions can be drawn:

The requirement thatlg be less than some fraction ﬂ2 above some frequency wo [spec
#1] means that the open loop gain L(s) [i.e., H(s)G(s)] must be greater in magnitude

than % lG(s)\ above w,. This means that there is a tradeoff between f, and PM,. The
2

smaller ﬂ2 is, the smaller PM1 can be. That is, the better the disturbance rejection
above w, the lower the achievable phase margin PMlz

Byl PM, |. (Lowering B, will also tend to reduce PM,, but not as directly.)

Raising w, will improve PM, but degrade PM,;:

w2T=>PM1T, PM,!

The requirement to keep |L(s)| below fg above wy [spec #4] (so as to avoid exciting
higher modes) has a cost in terms of PM2 : ﬁ3l=>PM2l.

Raising wq raises PMy: wq 13PM,T.

The requirement to hold lR~ within some fraction ﬂl of unit transmissibility below

some frequency w; [spec 4 2] means that |L(s)| must be less than B— |G(s)| below w,.

There is, then, a tradeoff between 61 and PM,: ﬂll:>PMll. (Changing ﬂl does not
significantly affect PM .)

Lowering w; will improve PM wllszM T.

Lowering the natural frequency w, e€ases the difficulty in obtaining adequate PM by
lowering the constraint at w, (see Figure 9) at wy: wp |3 PM,1. This means that
reducing the physical umbilical stiffness or increasing the physical payload mass will
make for an easier control problem.

The problem can be simplified, and both PM1 and PM2 can be increased, if the

umbilical is damped such that the resonance near w, is small. (Refer to spec #5, p.

23.)

The controller need not have zero gain at DC to be acceptable, as long as

lim s Hl(s) — 0. The controller may have a low frequency asymptote with slope
s+0

—1, 0, or greater.
ORIGINAL PAGE 15
OF POOR QUALITY
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Although the classical approach is not readily extendable to the MIMO problem, it does
provide some useful insights for informing the extended H, synthesis approach that we will
examine in Section 5. Weighting X(t) more heavily above w,, is analogous to lowering f3, (see
conclusion #1 above), so that better disturbance rejection is achieved at the expense of phase
margin (esp. PM;). Weighting the control u(t) more heavily at higher frequencies corresponds
to trying to reduce ﬁ3, so that a reduction in controller bandwidth is purchased at the expense
of phase margin (PM2) (see conclusion #3). At the lower end of the frequency spectrum,
increased weighting of relative displacement (x—d), reduced weighting of absolute acceleration
(%), or increased weighting of the control (u) each corresponds to attempting to lower f;, at the
cost of reducing PM1 (see conclusion #5). Since an acceptable controller can have large, even
infinite, DC gain (see conclusion #9) it is not necessary to weight u(t) highly at low
frequencies. In fact for phase margin considerations (PMI) it may be best to have "cheap"
control at low frequencies, as previously noted (see conclusion #5). Unity transmissibility,
then, could be "requested" at low frequencies by a relatively high low—frequency weighting of

relative displacement.

4.4 Extending to the Multiple Degree—of—Freedom Problem

The University has extensively éxamined the design of multiple—input—multiple—output
(MIMO) controllers for the multiple—degree—of—freedom active isolation problem. This work
will be examined in detail in the next section. Here, we will introduce some of the problems of
extending single—input—single—output (SISO) methods to MIMO problems by examining a
simple multiple—degree—of—freedom benchmark problem [12], shown in Figure L1.

This problem illustrates how controller design via decoupling an isolation problem into its open
loop modes, designing controllers for each mode, and recoupling back into the actuators, will
often result in poor robustness due to unmodeled cross—couplings. This mcthod of design,
converting a MIMO control problem to a serics of SISO problems, is often practiced. The

example system is composed of an isolated platform (width 0.5 m and height 0.2 m, depth

0:‘”'8;\3"‘\; “:‘.3 Cl"»" i
OF PUiis citeg s
TOURLITY
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Figure 11: Simple multiple—degree—of—freedom benchmark isolation problem

unspecified), two accelerometers, twoiactuators, an umbilical, and a translating base. The
platform may translate vertically or rotate about its center—of—mass. The actuators and
accelerometers are positioned a distance of ¢ = 0.2 m symmetrically about the assumed
center—of—mass location. An umbilical of stiffness k (no damping) runs between this location
and the base. The platform has mass m and inertia I. The equations of motion for the
platform’s translation x(t) and rotation 0(t) are
mx + kA0 + kx =, + f2+ dy
10+ kA0 + kAx = (q + A)a— (g — A)fy + d2

where d; and d, are the disturbances, and A is the error in the assumed center of mass. The
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accelerometer readings are
yi=x—(q- A)D
y2=x—(a- A)b
The nominal system (A = 0) can be decoupled in terms of the degrees of freedom by the change
in variables
F=1+1
M = q(f2 — 1)
21 = (y1+ ¥2)/2
22 = q(y2 — ¥1)/2
which are nominally the translational force, the moment, the translational acceleration, and the
angular acceleration for the platform, respectively. The nominal transfer functions for the

system are then

Z(s) = [_,“_i]w(s) +Dy(s))

ms 2 +

Zofs) = H(M(S) + Difs))

For translational motion, the natural frequency of the platform is Ik—/; . The rotational
motion of the platform is free since the umbilical is attached to the center—of—mass. To
compensate the nominal system, feedback can be designed for each mode of the system
separately, since the system is decoupled. Translational acceleration and velocity feedback are

first used to add effective mass and damping.

F(s) = — [a + %}zl(s).
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This lowers the natural frequency of translational motion, yielding the closed loop transfer

function

7.(s) = { 5 2 ]Dl(s).

Tm + a)s? + ¢s + k

Next, angular deflection feedback is used to constrain low frequency rotational motion and
some damping is provided.
n b
M(s)=—| 5+ 57| 2:6)

yielding

Za(s) = [ s ! ]Dz(s)

Is + ns + b

where the control system values are in effective units. A control system was designed to lower
the natural frequency of translational motion from 0.056 to 0.006 Hz with 40% of critical
damping. The controlled rotational motion has a natural frequency of 0.006 1z with 26% of
critical damping. This controller design would yield very effective isolation on the nominal
system.

The actual close loop poles, however, will be different from the nominal due to the error
in the center—of—mass A. The pole's. of the actual system are given by the roots of the

characteristic equation
[(m + a)s? + cs + k][Is? + ns + b] — [mA][A{as? +cs + k)] =0

For the nominal plant (A = 0), this results in the prescribed natural frequencies and critical
dampings. However, as the center—of—mass error increases, the poles migrate and the system
becomes unstable. For an error as small as 6 mm for this system, instability occurs [12]. A
plot of the pole movement vs. €rror in center—of -mass is shown in Figure 12. This sensitivity

results from the ill—conditioned character of the designed controller. A proper MIMO
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controller design might remedy this problem. In any case, an analysis of the problem from a
MIMO control perspective would indicate the potential instability and the nature of the
trade—off between performance and robustness.

In the next section, the MIMO design methods developed at the University of

Virginia are examined in detail. Special attention is given to the issue of

robustness.
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Figure 12: Loci of closed—loop poles as a function of center—of—mass error
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5. MODERN CONTROL THEORY DESIGN

5.1 Modern Control Methods: An Overview

Researchers at the University have investigated the use of Linear Quadratic Regulator
(LQR) and the Kalman—Bucy Filter (KBF) synthesis methods for the design of controllers for
microgravity vibration isolation platforms [13,14,15]. The LQR method produces a state
feedback controller which is optimal with respect to the quadratic (two norm) performance
index

0
J= J x1(jw)Qx(jw) + 1" (jw)Ra(jw) dw
—00
where Q and R are respectively the symmetric (usually diagonal) state and control weighting

matrices, and X(jw) and u(jw) are the Fourier transforms of the state and control vectors. The
state (positions and velocities for vibration isolation) satisfies the differential equation
x = Ax + Bu

The quadratic performance index of LQR is well suited to this problem since vibration
isolation quality is usually measured in terms of root—mean—square. However, it has been
shown by researchers at the University that some modification of the performance function is
necessary to apply this synthesis procedure to microgravity isolation controller design. State
feedback for the isolation problem is feedback of experiment positions, velocities, angles, and
angular velocities. Thus, LQR can only result in (inertial or relative) stiffness and damping
feedback. As was discussed previously, these isolation techniques cannot yield acceptable
isolation performance. Thus, an LQR performance index will not yield a satisfactory controller
unless frequency weighted Q and R matrices are used, or the plant model is changed so as
to have an acceleration pseudo—state [12]. Either of these methods results in the
addition of pseudo—states to the state variable model. Frequency weighted Q and R matrices
are also necessary to achieve robustness. Through choice of the weighting functions, the

designer can, in essence, shape the control loops.
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The differential equation above does not include a disturbance term. Consequently, the
resulting controller is optimal with respect to white noise (a weakness of the LQR machinery).
Since the power spectrum of the microgravity environment is not of this shape, the LQR
controller will not be optimal with respect to rejection of the disturbance. Through the
incorporation of a disturbance model (essentially a shaping filter), the LQR problem may be
modified to yield an optimal disturbance accommodating (i.e. rejection) controller. This also
incorporates the addition of pseudo—states to the state variable model. Disturbance
accommodation may also aid in increasing the controller’s robustness through loop
shaping. Through the incorporation of the pseudo—states for frequency weighting and
disturbance accommodation, controllers have been designed by University researchers using
the standard Algebraic Ricatti equations of LQR-KBF. These calculations have been done
using batch files written in the MATLAB language [15]. These controllers are then tested for
robustness with respect to structured and unstructured uncertainties using singular value and
structured singular value analysis. These analysis tools are the MIMO equivalent of the
familiar gain margin, phase margin, and root locus robustness tests. Results for a
one—degree—of—freedom problem are discussed below. MIMO vibration isolation research is
ongoing at the University. These modern control methods require a considerable degree of skill

and insight to employ properly.

5.2 Modern Control Results

The one—dimensional problem was first expressed in state—space form, with payload
relative position, relative velocity, and acceleration selected as states. Although many other
state choices could have been made, these three were chosen to minimize the number of states
necessary and to maximize the physical intuition possible. The selection would result in a state
feedback control that respectively modifies the effective umbilical stiffness and
damping, and the effective payload mass—all being familiar, accessible, and intuitive system

parameters. Relative, rather than inertial, position feedback would help to avoid exceeding
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rattlespace limits; and relative velocity feedback would provide a means of damping out system
resonances. The selection of acceleration as a state was considered desirable due to insight
gained from the passive control studies. A controller which increases effective payload mass
(by negative acceleration feedback) would potentially be able to accomplish disturbance
rejection without unnecessarily sacrificing stability— or performance robustness.

A second important feature of the problem formulation was the decision to incorporate
disturbances of two different kinds, the direct (i.e., onboard the experiment) and the indirect
(i.e., acting via the umbilical). It had been observed that reducing the effective umbilical
stiffness could aid in indirect disturbance rejection only, but that increasing payload effective
mass could help reject disturbances of both kinds. Although the primary type of disturbance
was considered likely to be the indirect, a means was needed to force the LQR—KBF (also
known as LQG) "machinery" to increase effective mass so as to result in a robust controller.
Including a direct disturbance provided this mechanism.

After completing the problem formulation, the next step was to develop a computer
code for use in design and analysis. A PC—based design code was written in MATLAB to allow
for accommodation of both direct and indirect disturbances. A large selection of frequency
weightings and disturbance accommodation filters was made available to the designer. The
code computes both feedback and obsefver gains, and also determines the constant feedforward
(preview) gains for which the theory was developed in [16). Although the feedforward option
remains available, subsequent analysis determined that for the present application the
feedforward gains do not make a significant enough contribution to warrant the additional
controller complexity required. A number of analysis routines were also written to allow the
designer to evaluate the resultant designs for purposes of comparison. The number of system
states, system performance, stability robustness, parameter sensitivity, and observer quality are
items whose comparisons are facilitated by these routines.

With the design and analysis tools in place, the next step was to develop the desired

controller. In order to make the controller as simple as possible, it was decided to begin with
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the basic LQG approach and to add complexity as needed. At each stage of additional
complexity an iterative cycle of design and analysis was employed in an attempt to get the
"best" achievable controller at that level of complexity.

The basic LQG approach (no frequency weighting, no disturbance accommodation, no
direct disturbance) yielded a satisfactory controller in terms of performance; but it had almost
no stability robustness to changes in umbilical stiffness from the nominal (as measured by
feedback uncertainty). This lack of robustness was due to the fact that LQG found adding
negative stiffness to be a "cheaper" means of indirect disturbance rejection than adding
effective mass. No frequency weighting was found which could rectify this problem.

A direct white disturbance was added in an attempt to force the LQG design
"machinery" to add effective mass. Although there were some gains in stability robustness this
was due entirely to changes in observer gain matrix L. The feedback gain matrix K remained
unaffected (note that this is fundamental in LQG theory and is not a numerical problem), and
the feedback stability robustness was still unsatisfactory.

Disturbance accommodation, with a lowpass filter applied to a large direct (white)
disturbance, resulted in a controller with excellent feedback— and multiplicative input stability
robustnesses, as measured by singular value checks. The multiplicative output stability
robustness was unacceptably low if cro‘ss—coupling was considered possible between states, but
structured singular value checks indicated that without cross—coupling the allowable
multiplicative output uncertainty was quite satisfactory. Since effective stiffness, effective
damping, and effective mass of the controlled system are uncoupled for the true
one—dimensional problem, the stability robustness measures of the system were considered
acceptable. Further, the performance was excellent, easily exceeding the specifications.
However, the controller gains were still large at higher frequencies where unmodeled system
modes were of concern (see specification #4). It was therefore necessary to use state— and
control frequency weighting in an attempt to force the controller to turn off by approximately

100 Hz (i.e., to reduce loop gain below a magnitude of one) so as to avoid exciting unmodcled



37

flexible modes. To reduce the loop gain at the higher frequencies it was necessary in that range
(1) to place a high weight on control, (2) to apply low weights to all three states, and (3) to
reduce the direct disturbance. |

At low frequencies the control weighting was left constant (i.e., "flat"), in an attempt to
minimize the number of added pseudostates. However, the resulting closed loop system now
had very poor low frequency stability robustness to parametric uncertainties, even though it
both retained its excellent performance and now provided the desired low controller bandwidth.

A classical design approach to the problem provided a simple solution to the robustness
issue. It was noted that for a controller with acceptable nominal performance the low
frequency asymptote for controller gain could have slope —1 or 0 or greater (Bode—a, log—log
scale). Therefore, the control weighting at DC could be zero (filter slope > 0) and the extended
H, synthesis "machinery" could be freed to consider finite or infinite DC controller—gain
options. This results, however, in the addition of a pseudostate. This change yielded a
controller that satisfied the design specifications and exhibited good stability robustness to
parametric and to multiplicative input— and output uncertainties. Considering (for the
moment )only single—parameter uncertainties, stability was guaranteed for umbilical stiffness to
within +99.7% of nominal, and umbilical damping could be essentially unknown. Payload
mass needed to be known only to within +65.2% of nominal. Having these initial favorable
indicators of system robustness the next step was to reduce the controller size. Further
robustness analysis would then be conducted on the reduced—order controller.

The controller described above was a ninth—order controller (i.e., had nine states), with
payload acceleration as its only required input. Other states and pseudostates were
reconstructed in the observer. To reduce the controller to a smaller order, a routine was
written in MATLAB in order to permit removing high frequency modes (modal truncation) and
weakly controllable and —observable system dynamics [17]. The result of applying this to the
ninth—order controller was a third—order controller that has all the essential features of the

ninth-order one. The loop gain, controller, and transmissibility plots for this reduced
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controller are shown in Figures 133,b,C. Note from the transmissibility plot that the
transmissibility is unity up to 10-3 Hz and that it is below 10-4 at 0.1 Hz. Notice f\luther that
the open loop and closed loop Bode plots merge at about 100 Hz. This is due to the fact that
the controller has essentially "turned off" by that frequency (see Figure 13b).

There are four basic checks that must be made of any controlled system: nominal
stability, nominal stability, robust stability, and robust performance. These four checks are
considered below, consecutively.

The extended Hg synthesis method used for this portion provides an inherent guarantee
of stability for a nominal plant with full state feedback. Further, the "separation principle"”
guarantees that for a perfectly known plant a stable asymptotic observer will not destabilize
the system. Thus, nominal stability is assured with the full order observer, provided the
observer itself is stable. Reducing the controller order removes this guarantee, but simple
eigenvalue checks verify that both the reduced third—order controller as designed and the
associated controlled system are stable for the nominal plant. A simple check of the loop gain
Bode plot (Figure 13a) confirms the conclusion that the closed loop system is stable, since it is
known that the loop gain is minimum phase.

The second necessary check is of nominal performance. As indicated by the closed—loop
transmissibility plot (Figure 13c) the nominal performance is quite satisfactory. Note that the
"ess than 10-2" spec at 0.1 Hz is surpassed by more than an order of magnitude. This
overdesign was intentional, and necessary, since plant modeling errors (open loop system,
sensors, and actuators) will certainly degrade performance margins.

Robust stability measures are necessary to determine whether the closed—loop system
will remain stable given the anticipated sensor, actuator, and plant parametcr uncertainties.
Three different types of robust stability measures were used, for guaranteeing system stability
for multiplicative input, multiplicative output, and feedback uncertainties below certain levels.
The multiplicative input uncertainty allowable was found to be equivalent to 2 guaranteed
phase margin (interval) of [-48°, +48°], and to a guaranteed gain margin (interval) of [0.304,
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5.434]. The actual margins are even larger (phase margins: [-55°, +55°], gain margins:
[0,400]). Since only one plant output is sensed (viz., payload acceleration), the multiplicative
input and output robust stability guarantees are identical. A feedback uncertainty measure
was used to determine guaranteed minimum stability bounds on uncertainties in umbilical
stiffness and damping, and on payload mass. It was found, as noted previously (p- 34), that
closed—loop system stability was guaranteed for single—parameter uncertainties much larger
than anticipated. By considering the feedback uncertainty structure, it was shown that for
simultaneous mass, damping, and stiffness uncertainties of +20%, +100%, and +69%,
respectively, system stability could be assured. Higher frequency modes of the system were
considered not to be a significant concern since the controller bandwidth was limfted during
design.

Finally, measures were needed of performance robustness. Structured singular value
plots were made to find conservative bounds on multiplicative input (and output) uncertainties
that would not lead to plants with unacceptable performance. Below 10-3 Hz it was found that
for combined sensor and actuator uncertainties of up to £11° in phase or of +19% in gain the
performance can be guaranteed to remain acceptable. At higher frequencies the guarantees are
much better, so that by 220 Hz uncertainties of up to £180° in phase or of 4200% in gain are
permissible.

Structured singular value plots were also used in an attempt to find performance
robustness guarantees in the face of known parametric uncertainties, but the effort was only
partly successful. The checks led to the conclusion that for single—parameter uncertainties in
stiffness of +40% both stability and acceptable performance could be assured. However,
single—parameter uncertainty bounds found by this method on damping and mass were too
conservative to be useful. Consequently, real parametric studies were conducted on
plant—uncertainty effects on closed—loop performance. It was determined that closed loop

performance appeared acceptable for the various combinations of parametric uncertainties
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examined, with mass and stiffness varied in the intervals [-50%, +100%] and [-20%, +100%],
respectively, and with damping varied by more than ten times its nominal value.

The above extended H; synthesis — i analysis approach produced a controller that easily
satisfies the competing demands of the posed 1-D microgravity vibration isolation problem.
Further, unlike the classical approach, it is readily extendable for use on a 3—D problem.
Frequency weighting and disturbance— accommodation were both found to be necessary if H,
synthesis is to be used in involving the posed isolation problem. Their inclusion, along with a
judicious choice of states, provides the designer with a powerful and intuitive set of weapons for
his design arsenal. Disturbance accommodation of a direct disturbance model is necessary to
force the H, synthesis machinery to avoid negative—stiffness solutions. The result was an
actively controlled system that uses a "smart" form of acceleration feedback to overcome the

robustness problems that commonly plague the basic LQG synthesis approach.
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6. EXPERIMENTAL RIG

6.1 Introduction

The University began construction of a one—degree—of—freedom experimental rig to
demonstrate active microgravity isolation in the fall of 1990. The rig, now completed, was
designed so as to illustrate active isolation of a tethered mass down to very low frequencies
(0.01 Hz). This required both a large—stroke actuator and acceleration feedback as discussed in
Sections 2 and 4. To our knowledge, this is the first microgravity rig to address either tethered

or large—stroke active isolation.

6.2 Rig Description

The experimental rig built at the University of Virginia is shown in Figure 14. The rig
consists of a 75 1b. steel cylinder representing a microgravity experiment, two air dashpots
representing umbilicals, an electrodynamic shaker representing the vibrating experiment rack,
and the large—stroke Lorentz actuator. The steel cylinder is suspended with magnetic supports
so that it may freely move horizontally along its axis [16]. Similar to radial magnetic bearings,
each support consists of four horseshoe electromagnets. Eddy current probes sense the radial
position of the cylinder and complete the magnetic suspension feedback loops supplying
current to the electromagnets. The supports hold the cylinder firmly in place but produce no
friction. When the electromagnetic support system is turned off, the cylinder rests on a pair of
touchdown pedestals.

The electrodynamic shaker (representing the experiment rack aboard the orbiter) has
a long peak—to—peak stroke of 6.25 inches. This is the vibration source from which the steel
cylinder (experiment) must be isolated. The shaker is mounted, via aluminum plates, on a
concrete block resting on the laboratory floor. The shaker can generate sinusoidal, random or
impulse waveforms at frequencies down to DC, thus simulating the disturbances typically

produced on a manned orbiter.
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Fig. 14. Microgravity isolation rig at the University of Virginia

The umbilicals connecting a microgravity experiment to the orbiter are expected to be
flexible hoses and wires. These are modeled by air dashpots with adjustable stiffness and
damping coefficients. The vibration isolation test rig at the University has been designed so
that different kinds of umbilicals may be employed, including actual hoses like those used for
fluid transfer. The large—stroke Lorentz actuator connects the levitated steel cylinder to a
plate connected to the concrete base.

The axial acceleration of the cylinder is sensed off a sensory plate using a very low
frequency accelerometer with a resolution of approximately 1 pug. The accelerometer signal is
fed through a low pass filter and a transconductance bipolar linear amplifier to produce the
required current. This current is applied to the Lorentz actuator to isolate the cylinder from

the disturbances generated by the shaker.
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The background vibration levels on the concrete base on which the cylinder is mounted
have been measured over several twenty—four—hour periods, in both the horizontal and the
vertical directions. These vibrations are of the order of milli—g’s, the quietest period occurring
from late in the night to early in the morning [18]. Operating at this time will yield the highest

degree of reproducibility in our results.

6.3 Experimental Results

Preliminary results have been obtained for vibration isolation in the (1-3) Hz
range. An air dashpot (umbilical) was the only direct connection between the shaker
armature (space platform) and the cylinder (science experiment requiring isolation).

An HP Structural Dynamics Analyzer vas used for data acquisition. Figure 15isa
typical example illustrating the isolation obtained using simple lowpass acceleration
feedback. The shaker generated a sinusoidal armature motion at a frequency of 2 Hz.
For this case, the shaker’s acceleration had an amplitude of 14,000 pg. The cylinder
had a peak acceleration amplitude of approximately 7,000 pg with the controller "off"
and 465 pg with the controller "on". Therefore, a fifteen—fold reduction of vibration
has been obtained through acceleration feedback.

The control system is now being nodified to improve the isolation capability of

the controller.
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7.  CONCLUSION

The University has made substantial progress in many areas of active microgravity
isolation in the last three years. We have primarily addressed the design of actuators and
control systems for the active isolation of tethered experiments. In actuator research, our work
has examined electrodynamic and electromagnetic  actuators for single and
multiple—degree—of—{reedom isolation, and the use of coarse—fine systems for the practical
extension of electromagnetic isolation to large strokes. For control system design, we have
addressed performance limitations, robustness issues, and the use of H2 methods for synthesis.
Finally, we have constructed a single—degree—of—freedom test rig and demonstrated active
isolation of a tethered mass through acceleration feedback. Our research is ongoing and
several important results are still to be achieved. The University looks forward to continuing
its work in microgravity vibration isolation and to continued collaboration with NASA Lewis
Research Center.

To make a microgravity environment available for space experiments in the near
future, we recommend the following:

*  The umbilicals to be used to service the experiments need to be identified and
their properties need to be examined. As the research conducted at the
University over the last three years demonstrates, the difficulty of achieving a
microgravity environment is very directly related to the umbilical’s
properties. For multiple—degree—of—freedom isolation, the uncertain coupling
of degrees—of—freedom through the umbilical may present a challenge to
controller design. For this reason, it is also recommended that controlled
umbilicals be examined.

*  The issue of direct disturbances needs to be addressed. Acceleration feedback,
like that developed in our work, will be effective against direct disturbances
as long as the frequencies of these disturbances are below that of the first

flexible mode of the experiment structure. Perhaps a specification for
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experiment designers on the frequencies and amplitudes (or power spectrum) of
allowable direct disturbances can be written. Such a specification would
require that direct disturbances be acceptable without active vibration control
for frequencies near and above the first flexible mode. This may help focus
attention on the issue of direct disturbances and experiment design so that any
required technology development may begin soon. For example, such a
specification may result in the inclusion of passive vibration isolation mounts
onboard the experiment package to isolate the sensitive process from high
frequency direct disturbances produced by auxiliary equipment (e.g., pumps,
fans, shutters, valves).

The isolation frequency and amplitude requirements of microgravity experiments
and the microgravity vibration environment of the space shuttle and space
station need to be better characterized. This is very important in the low
frequency (0—1 hz) range. Only when these quantities are specified can the
required stroke of the actuator be determined. If strokes larger than 1 cm are
necessary, a coarse—fine actuation system should be used. In this case, a
technology development program needs to be started. The authors believe that a
significant degree of development may be required for such a coarse—fine
actuation scheme.

A six—degree—of—freedom microgravity isolation system needs to be flown aboard
the space shuttle in the near future. Only when we start developing actual
hardvare and software for an orbiting isolation system will we make significant
progress toward practical isolation for space experiments. ¥hile we have
learned a great deal from the experiments conducted so far, many of the
difficulties that remain cannot be fully simulated or anticipated using ground

based hardware.
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ABSTRACT

This report summarizes the research performed at the University «{ Virginia under
Grant No. NAG—-3-909 from NASA Lewis Research Center. This research on microgravity
vibration isolation was focused in three areas: (1) the development of new actuators for use in
microgravity isolation, (2) the design of controllers for multiple—degree—of—freedom active
isolation, and (3) the construction of a single—degree—of—freedom test rig with umbilicals.
Described herein are the design and testing of a large stroke linear actuator; the conceptual
design and analysis of a redundant coarse—fine six—degree—of-freedom actuator; an
investigation of the control issues of active microgravity isolation; a methodology for the design
of multiple—degree—of—freedom isolation control systems using modern control theory; and the

design and testing of a single—degree—of—freedom test rig with umbilicals.
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1. INTRODUCTION

The University of Virginia began research in microgravity vibration isolation in 1988
under a three—year grant from NASA Lewis Research Center. The goals of this project were
(1) to develop new actuators for use in microgravity isolation, (2) to investigate the design of
controllers for multiple—degree—of—freedom (MDOF) active isolation, and (3) to construct a
single—degree—of—freedom (SDOF) test rig with umbilicals. The Principal Investigator for the
first two years of this project was Dr. Paul E. Allaire. Dr. Carl R. Knospe became the
Principal Investigator for the final year of the grant. Other faculty working with the project
included Dr. Robert H. Humphris and Dr. David W. Lewis. Several graduatc students have
aided in this effort: Mr. Bibhuti Banerjee in actuator and test rig design, Mr. R. David
Hampton in the multivariable control theory of active isolation, and Mr. A. Peter Allan in
actuator design and instrumentation. Several University personnel have wurked at NASA
Lewis during the summers, and contact between NASA and the University hus been frequent.
This final report on the contract reviews the research performed over the thirce years of the
grant. Both experimental and theoretical work in microgravity isolation cuntinues at the
University. The University aspires to become a center of excellence in active vibration
isolation systems for space applications.

The next six sections discuss ‘t.he research efforts of the University in meeting the
isolation technology needs of the microgravity community. In Section 2, the design and testing
of a single—degree—of—freedom, large—stroke actuator are reviewed. Section 3 examines
multiple—degree—of—freedom actuator design. A survey of published designs is presented and a
new coarse—fine actuator is proposed and analyzed. In Section 4, the design of active isolation
control systems is examined. Results and discussion of the University’s design methodology,
frequency—shaped Linear Quadratic Regulator and Kalman—Bucy Filter synthesis, are given in
Section 5. In Section 6, the design and early experimental results of the microgravity vibration
isolation test rig are examined. Experimental results demonstrate that active vibration

isolation of experiments with umbilicals can be obtained using loop—shaped acceleration



feedback.  Section 7 concludes this final report, with a summary of our results and

recommendations for future research. An appendix contains all papers presented, published, or

submitted during the grant.



